event_node.cc 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/profiler/event_node.h"

#include <limits.h>
15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#include <algorithm>
#include <deque>
#include <set>
#include <stack>

namespace paddle {
namespace platform {

HostTraceEventNode::~HostTraceEventNode() {
  // delete all runtime nodes and recursive delete children
  for (auto it = runtime_node_ptrs_.begin(); it != runtime_node_ptrs_.end();
       ++it) {
    delete *it;
  }
  for (auto it = children_.begin(); it != children_.end(); ++it) {
    delete *it;
  }
}

CudaRuntimeTraceEventNode::~CudaRuntimeTraceEventNode() {
  // delete all device nodes
  for (auto it = device_node_ptrs_.begin(); it != device_node_ptrs_.end();
       ++it) {
    delete *it;
  }
}

NodeTrees::~NodeTrees() {
  // delete all root nodes
  for (auto it = thread_event_trees_map_.begin();
       it != thread_event_trees_map_.end(); ++it) {
    delete it->second;
  }
}

void NodeTrees::BuildTrees(
    const std::vector<HostTraceEventNode*>& host_event_nodes,
    std::vector<CudaRuntimeTraceEventNode*>& runtime_event_nodes,
    const std::vector<DeviceTraceEventNode*>& device_event_nodes) {
55
  // separate Host Event Nodes into different threads
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  std::map<uint64_t, std::vector<HostTraceEventNode*>>
      thread2host_event_nodes;  // used to store HostTraceEventNodes per thread
  std::map<uint64_t, std::vector<CudaRuntimeTraceEventNode*>>
      thread2runtime_event_nodes;  // used to store CudaRuntimeTraceEventNode
                                   // per
                                   // thread
  std::map<uint32_t, CudaRuntimeTraceEventNode*>
      correlation_id2runtime_event_node;  // used to store the relation between
                                          // correlation id and runtime node
  // construct thread2host_event_nodes
  for (auto it = host_event_nodes.begin(); it != host_event_nodes.end(); ++it) {
    thread2host_event_nodes[(*it)->ThreadId()].push_back(*it);
  }
  // construct thread2runtime_event_nodes and
  // correlation_id2runtime_event_node
  for (auto it = runtime_event_nodes.begin(); it != runtime_event_nodes.end();
       ++it) {
    thread2runtime_event_nodes[(*it)->ThreadId()].push_back(*it);
    correlation_id2runtime_event_node[(*it)->CorrelationId()] = *it;
  }
  // associate CudaRuntimeTraceEventNode and DeviceTraceEventNode
  // construct correlation_id2device_event_nodes
  for (auto it = device_event_nodes.begin(); it != device_event_nodes.end();
       ++it) {
    auto dst_iter =
        correlation_id2runtime_event_node.find((*it)->CorrelationId());
    PADDLE_ENFORCE_NE(
        dst_iter, correlation_id2runtime_event_node.end(),
        platform::errors::NotFound("Unknown device events, "
                                   "no corresponding cuda runtime events"));
    dst_iter->second->AddDeviceTraceEventNode(*it);
  }
  // sort host event nodes and runtime event nodes according to start_ns and
  // end_ns
  // the smaller start_ns is, the further ahead position is.
  // when start_ns of two nodes are equal, the one with bigger end_ns should be
  // ahead.
  for (auto it = thread2host_event_nodes.begin();
       it != thread2host_event_nodes.end(); ++it) {
    std::sort(it->second.begin(), it->second.end(),
              [](HostTraceEventNode* node1, HostTraceEventNode* node2) {
                if (node1->StartNs() < node2->StartNs()) {
                  return true;
                }
                if ((node1->StartNs() == node2->StartNs()) &&
                    (node1->EndNs() > node2->EndNs())) {
                  return true;
                }
                return false;
              });
  }
  for (auto it = thread2runtime_event_nodes.begin();
       it != thread2runtime_event_nodes.end(); ++it) {
    std::sort(
        it->second.begin(), it->second.end(),
        [](CudaRuntimeTraceEventNode* node1, CudaRuntimeTraceEventNode* node2) {
          if (node1->StartNs() < node2->StartNs()) {
            return true;
          }
          if ((node1->StartNs() == node2->StartNs()) &&
              (node1->EndNs() > node2->EndNs())) {
            return true;
          }
          return false;
        });
  }

  // construct trees
  std::set<uint64_t> thread_set;
  for (auto it = thread2host_event_nodes.begin();
       it != thread2host_event_nodes.end(); ++it) {
    thread_set.insert(it->first);
  }

  for (auto it = thread2runtime_event_nodes.begin();
       it != thread2runtime_event_nodes.end(); ++it) {
    thread_set.insert(it->first);
  }

  for (auto it = thread_set.begin(); it != thread_set.end(); ++it) {
    thread_event_trees_map_[*it] = BuildTreeRelationship(
        thread2host_event_nodes[*it], thread2runtime_event_nodes[*it]);
  }
}

HostTraceEventNode* NodeTrees::BuildTreeRelationship(
    std::vector<HostTraceEventNode*> host_event_nodes,
    std::vector<CudaRuntimeTraceEventNode*> runtime_event_nodes) {
  // a stack used for analyse relationship
  auto node_stack = std::vector<HostTraceEventNode*>();
  // root node, top level
  auto root_node = new HostTraceEventNode(
      HostTraceEvent(std::string("root node"), TracerEventType::UserDefined, 0,
                     ULLONG_MAX, 0, 0));
  // push root node into node_stack
  node_stack.push_back(root_node);
  // handle host_event_nodes
  for (auto it = host_event_nodes.begin(); it != host_event_nodes.end(); ++it) {
    while (true) {
      auto stack_top_node = node_stack.back();
      if ((*it)->StartNs() < stack_top_node->EndNs()) {
        // current node is the child of stack_top_node
        PADDLE_ENFORCE_LE(
            (*it)->EndNs(), stack_top_node->EndNs(),
            platform::errors::Fatal(
                "should not have time range intersection within one thread"));
        stack_top_node->AddChild(*it);
        node_stack.push_back(*it);
        break;
      } else {
        node_stack.pop_back();
        // insert runtime node
        // select runtime nodes which time range within stack_top_node
        std::vector<CudaRuntimeTraceEventNode*>::iterator firstposition;
        std::vector<CudaRuntimeTraceEventNode*>::iterator lastposition =
            runtime_event_nodes.end();
        bool hasenter = false;
        for (auto runtimenode = runtime_event_nodes.begin();
             runtimenode != runtime_event_nodes.end(); ++runtimenode) {
          if (((*runtimenode)->StartNs() >= stack_top_node->StartNs()) &&
              ((*runtimenode)->EndNs() <= stack_top_node->EndNs())) {
            if (!hasenter) {
              firstposition = runtimenode;
              hasenter = true;
            }
            stack_top_node->AddCudaRuntimeNode(*runtimenode);
          } else {
            // from this runtime node, not within stack_top_node, erase the
            // nodes from runtime_event_nodes
            if ((*runtimenode)->StartNs() > stack_top_node->EndNs()) {
              lastposition = runtimenode;
              break;
            }
          }
        }
        if (hasenter) {
          runtime_event_nodes.erase(firstposition, lastposition);
        }
      }
    }
  }
  // to insert left runtimenode into host_event_nodes
  while (!node_stack.empty()) {
    auto stack_top_node = node_stack.back();
    // insert runtime node
    // select runtime nodes which time range within stack_top_node
    std::vector<CudaRuntimeTraceEventNode*>::iterator firstposition;
    std::vector<CudaRuntimeTraceEventNode*>::iterator lastposition =
        runtime_event_nodes.end();
    bool hasenter = false;
    for (auto runtimenode = runtime_event_nodes.begin();
         runtimenode != runtime_event_nodes.end(); ++runtimenode) {
      if (((*runtimenode)->StartNs() >= stack_top_node->StartNs()) &&
          ((*runtimenode)->EndNs() <= stack_top_node->EndNs())) {
        if (!hasenter) {
          firstposition = runtimenode;
          hasenter = true;
        }
        stack_top_node->AddCudaRuntimeNode(*runtimenode);
      } else {
        // from this runtime node, not within stack_top_node, erase the
        // nodes from runtime_event_nodes
        if ((*runtimenode)->StartNs() > stack_top_node->EndNs()) {
          lastposition = runtimenode;
          break;
        }
      }
    }
    if (hasenter) {
      runtime_event_nodes.erase(firstposition, lastposition);
    }
    node_stack.pop_back();
  }
  return root_node;
}

std::map<uint64_t, std::vector<HostTraceEventNode*>> NodeTrees::Traverse(
    bool bfs) const {
  // traverse the tree, provide two methods: bfs(breadth first search) or
  // dfs(depth first search)
  std::map<uint64_t, std::vector<HostTraceEventNode*>> thread2host_event_nodes;
  if (bfs == true) {
    for (auto it = thread_event_trees_map_.begin();
         it != thread_event_trees_map_.end(); ++it) {
      auto deque = std::deque<HostTraceEventNode*>();
      uint64_t thread_id = it->first;
      auto root_node = it->second;
      deque.push_back(root_node);
      while (!deque.empty()) {
        auto current_node = deque.front();
        deque.pop_front();
        thread2host_event_nodes[thread_id].push_back(current_node);
        for (auto child = current_node->GetChildren().begin();
             child != current_node->GetChildren().end(); ++child) {
          deque.push_back(*child);
        }
      }
    }

  } else {
    for (auto it = thread_event_trees_map_.begin();
         it != thread_event_trees_map_.end(); ++it) {
      auto stack = std::stack<HostTraceEventNode*>();
      uint64_t thread_id = it->first;
      auto root_node = it->second;
      stack.push(root_node);
      while (!stack.empty()) {
        auto current_node = stack.top();
        stack.pop();
        thread2host_event_nodes[thread_id].push_back(current_node);
        for (auto child = current_node->GetChildren().begin();
             child != current_node->GetChildren().end(); ++child) {
          stack.push(*child);
        }
      }
    }
  }
  return thread2host_event_nodes;
}

void NodeTrees::LogMe(BaseLogger* logger) { logger->LogNodeTrees(*this); }

void NodeTrees::HandleTrees(
    std::function<void(HostTraceEventNode*)> host_event_node_handle,
    std::function<void(CudaRuntimeTraceEventNode*)> runtime_event_node_handle,
    std::function<void(DeviceTraceEventNode*)> device_event_node_handle) {
  // using different user-defined function to handle different nodes
  const std::map<uint64_t, std::vector<HostTraceEventNode*>>
      thread2host_event_nodes = Traverse(true);
  for (auto it = thread2host_event_nodes.begin();
       it != thread2host_event_nodes.end(); ++it) {
    for (auto hostnode = it->second.begin(); hostnode != it->second.end();
         ++hostnode) {
      if (hostnode != it->second.begin()) {  // skip root node
        host_event_node_handle(*hostnode);
      }
      for (auto runtimenode = (*hostnode)->GetRuntimeTraceEventNodes().begin();
           runtimenode != (*hostnode)->GetRuntimeTraceEventNodes().end();
           ++runtimenode) {
        runtime_event_node_handle(*runtimenode);
        for (auto devicenode =
                 (*runtimenode)->GetDeviceTraceEventNodes().begin();
             devicenode != (*runtimenode)->GetDeviceTraceEventNodes().end();
             ++devicenode) {
          device_event_node_handle(*devicenode);
        }
      }
    }
  }
}
}  // namespace platform
}  // namespace paddle