modelaverage.py 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.optimizer import Optimizer
16 17
from paddle.fluid import framework, layers
from paddle.fluid.framework import Program
18 19 20 21
from paddle.fluid.layer_helper import LayerHelper
import paddle
from paddle.fluid.dygraph import base as imperative_base
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager
22
from paddle import _C_ops, _legacy_C_ops
23
from paddle.fluid.framework import in_dygraph_mode
24

25
__all__ = []
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132


class ModelAverage(Optimizer):
    r"""
    The ModelAverage optimizer accumulates specific continuous historical
    parameters during training. The accumulated historical range can be controlled
    by the passed ``average_window_rate`` argument. The averaged ``Parameter`` are
    used in the prediction, which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::

        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.

    Args:
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        parameters (list, optional): List of ``Tensor`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Examples:

      .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn as nn
        import paddle.optimizer as opt

        BATCH_SIZE = 16
        BATCH_NUM = 4
        EPOCH_NUM = 4

        IMAGE_SIZE = 784
        CLASS_NUM = 10

        # define a random dataset
        class RandomDataset(paddle.io.Dataset):
            def __init__(self, num_samples):
                self.num_samples = num_samples

            def __getitem__(self, idx):
                image = np.random.random([IMAGE_SIZE]).astype('float32')
                label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                return image, label

            def __len__(self):
                return self.num_samples

        class LinearNet(nn.Layer):
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
                self.bias = self._linear.bias

            @paddle.jit.to_static
            def forward(self, x):
                return self._linear(x)

        def train(layer, loader, loss_fn, opt, model_average):
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = layer(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    opt.step()
                    model_average.step()
                    opt.clear_grad()
                    model_average.clear_grad()
                    print("Train Epoch {} batch {}: loss = {}, bias = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy()), layer.bias.numpy()))
        def evaluate(layer, loader, loss_fn):
            for batch_id, (image, label) in enumerate(loader()):
                out = layer(image)
                loss = loss_fn(out, label)
                loss.backward()
                print("Evaluate batch {}: loss = {}, bias = {}".format(
                    batch_id, np.mean(loss.numpy()), layer.bias.numpy()))

        # create network
        layer = LinearNet()
        loss_fn = nn.CrossEntropyLoss()
        optimizer = opt.Momentum(learning_rate=0.2, momentum=0.1, parameters=layer.parameters())
133
        model_average = paddle.incubate.ModelAverage(0.15,
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
                                                    parameters=layer.parameters(),
                                                    min_average_window=2,
                                                    max_average_window=10)

        # create data loader
        dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
        loader = paddle.io.DataLoader(dataset,
            batch_size=BATCH_SIZE,
            shuffle=True,
            drop_last=True,
            num_workers=2)
        # create data loader
        eval_loader = paddle.io.DataLoader(dataset,
            batch_size=BATCH_SIZE,
            shuffle=True,
            drop_last=True,
            num_workers=1)

        # train
        train(layer, loader, loss_fn, optimizer, model_average)

        print("\nEvaluate With ModelAverage")
        with model_average.apply(need_restore=False):
            evaluate(layer, eval_loader, loss_fn)

        print("\nEvaluate With Restored Paramters")
        model_average.restore()
        evaluate(layer, eval_loader, loss_fn)
162

163 164
    """

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    def __init__(
        self,
        average_window_rate,
        parameters=None,
        min_average_window=10000,
        max_average_window=10000,
        name=None,
    ):
        super(ModelAverage, self).__init__(
            learning_rate=0.0,
            parameters=parameters,
            weight_decay=None,
            grad_clip=None,
            name=name,
        )
180 181 182 183 184 185 186

        self.helper = LayerHelper(self.__class__.__name__)
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
        self.type = "average_accumulates"

J
Jiabin Yang 已提交
187
        if not framework._non_static_mode():
188
            global_block = framework.default_main_program().global_block()
189 190
            all_parameters = (
                parameters if parameters else global_block.all_parameters()
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
            )

            self._create_accumulators(global_block, all_parameters)
            for param in all_parameters:
                self._append_optimize_op(global_block, [param, None])
            self.apply_program = Program()
            block = self.apply_program.global_block()
            with framework.program_guard(main_program=self.apply_program):
                for param in all_parameters:
                    self._add_average_apply_op(block, param)
            self.restore_program = Program()
            block = self.restore_program.global_block()
            with framework.program_guard(main_program=self.restore_program):
                for param in all_parameters:
                    self._add_average_restore_op(block, param)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for param in parameters:
            self._add_accumulator('sum_1', param)
            self._add_accumulator('sum_2', param)
            self._add_accumulator('sum_3', param)
            self._add_accumulator('restore', param)
215 216 217 218 219 220 221 222 223
            self._add_accumulator(
                'num_accumulates', param, dtype='int64', shape=[1]
            )
            self._add_accumulator(
                'old_num_accumulates', param, dtype='int64', shape=[1]
            )
            self._add_accumulator(
                'num_updates', param, dtype='int64', shape=[1]
            )
224 225 226 227 228 229 230

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        sum_1 = self._get_accumulator('sum_1', param_and_grad[0])
        sum_2 = self._get_accumulator('sum_2', param_and_grad[0])
        sum_3 = self._get_accumulator('sum_3', param_and_grad[0])
231 232 233 234 235 236
        num_accumulates = self._get_accumulator(
            'num_accumulates', param_and_grad[0]
        )
        old_num_accumulates = self._get_accumulator(
            'old_num_accumulates', param_and_grad[0]
        )
237
        num_updates = self._get_accumulator('num_updates', param_and_grad[0])
238 239

        if in_dygraph_mode():
240
            _, _, _, _, _, _ = _C_ops.average_accumulates_(
241 242 243 244 245 246 247 248 249 250 251
                param_and_grad[0],
                sum_1,
                sum_2,
                sum_3,
                num_accumulates,
                old_num_accumulates,
                num_updates,
                self.average_window,
                self.max_average_window,
                self.min_average_window,
            )
252 253
            return None
        elif framework._non_static_mode():
254
            _, _, _, _, _, _ = _legacy_C_ops.average_accumulates(
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
                param_and_grad[0],
                sum_1,
                sum_2,
                sum_3,
                num_accumulates,
                old_num_accumulates,
                num_updates,
                sum_1,
                sum_2,
                sum_3,
                num_accumulates,
                old_num_accumulates,
                num_updates,
                'average_window',
                self.average_window,
                'min_average_window',
                self.min_average_window,
                'max_average_window',
                self.max_average_window,
            )
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
            return None

        block = framework.default_main_program().global_block()
        attrs = {
            "average_window": self.average_window,
            "min_average_window": self.min_average_window,
            "max_average_window": self.max_average_window,
        }

        inputs = {
            "param": param_and_grad[0],
            "in_sum_1": sum_1,
            "in_sum_2": sum_2,
            "in_sum_3": sum_3,
            "in_num_accumulates": num_accumulates,
            "in_old_num_accumulates": old_num_accumulates,
291
            "in_num_updates": num_updates,
292 293 294 295 296 297 298 299 300 301 302
        }

        outputs = {
            "out_sum_1": sum_1,
            "out_sum_2": sum_2,
            "out_sum_3": sum_3,
            "out_num_accumulates": num_accumulates,
            "out_old_num_accumulates": old_num_accumulates,
            "out_num_updates": num_updates,
        }

303 304 305 306 307 308 309
        average_accumulates_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
310 311 312 313

        return average_accumulates_op

    @imperative_base.no_grad
314 315 316
    def minimize(
        self, loss, startup_program=None, parameters=None, no_grad_set=None
    ):
317 318
        """
        Add operations to minimize ``loss`` by updating ``parameters``.
319

320 321 322 323 324 325 326 327 328 329
        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
330

331 332 333 334
        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
335 336
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
337
            ``fetch_list`` before run, see details in ``Executor``.
338

339
        Examples:
340

341 342 343
            .. code-block:: python

                import paddle
344
                inp = paddle.rand([1, 10], dtype="float32")
345 346 347 348 349 350 351 352
                linear = paddle.nn.Linear(10, 1)
                out = linear(inp)
                loss = paddle.mean(out)
                loss.backward()

                sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
                sgd.minimize(loss)

353
                modelaverage = paddle.incubate.ModelAverage(0.15,
354 355 356 357 358 359 360 361
                                                            parameters=linear.parameters(),
                                                            min_average_window=2,
                                                            max_average_window=4)
                modelaverage.minimize(loss)
                sgd.clear_grad()
                modelaverage.clear_grad()

        """
J
Jiabin Yang 已提交
362
        if framework._non_static_mode():
363 364 365 366 367 368 369
            self.step()

    @framework.dygraph_only
    @imperative_base.no_grad
    def step(self):
        """
        Execute the optimizer and update parameters once.
370

371 372 373 374 375 376 377 378
        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
379
                inp = paddle.rand([1, 10], dtype="float32")
380 381 382 383
                linear = paddle.nn.Linear(10, 1)
                out = linear(inp)
                loss = paddle.mean(out)
                sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
384
                modelaverage = paddle.incubate.ModelAverage(0.15,
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
                                                            parameters=linear.parameters(),
                                                            min_average_window=2,
                                                            max_average_window=4)
                loss.backward()
                sgd.step()
                modelaverage.step()
                sgd.clear_grad()
                modelaverage.clear_grad()
        """

        params_grads = []
        for param in self._parameter_list:
            if not param.trainable:
                continue
            if param._grad_ivar() is not None:
                grad_var = param._grad_ivar()
                params_grads.append((param, grad_var))

        block = framework.default_main_program().global_block()
        self._create_accumulators(block, self._parameter_list)
        for param_and_grad in params_grads:
            self._append_optimize_op(block, param_and_grad)

    @signature_safe_contextmanager
    @imperative_base.no_grad
    def apply(self, executor=None, need_restore=True):
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.

        Args:
            executor(Executor): The network executor in static-graph mode. The default value is None in dygraph mode.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

            .. code-block:: python

                import paddle
425
                inp = paddle.rand([1, 10], dtype="float32")
426 427 428 429 430 431 432
                linear = paddle.nn.Linear(10, 1)
                out = linear(inp)
                loss = paddle.mean(out)
                loss.backward()

                sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())

433
                modelaverage = paddle.incubate.ModelAverage(0.15,
434 435 436 437 438
                                                            parameters=linear.parameters(),
                                                            min_average_window=2,
                                                            max_average_window=4)
                sgd.step()
                modelaverage.step()
439

440 441 442 443 444 445 446
                with modelaverage.apply():
                    for param in linear.parameters():
                        print(param)

                for param in linear.parameters():
                    print(param)
        """
J
Jiabin Yang 已提交
447
        if framework._non_static_mode():
448
            for param in self._parameter_list:
449 450 451
                num_accumulates = self._get_accumulator(
                    'num_accumulates', param
                )
452
                old_num_accumulates = self._get_accumulator(
453 454
                    'old_num_accumulates', param
                )
455 456 457 458 459 460 461 462 463
                sum_1 = self._get_accumulator('sum_1', param)
                sum_2 = self._get_accumulator('sum_2', param)
                sum_3 = self._get_accumulator('sum_3', param)
                param_restore = self._get_accumulator('restore', param)

                paddle.assign(param, param_restore)
                total_param = sum_1 + sum_2 + sum_3
                total_accumulates = num_accumulates + old_num_accumulates
                total_param = paddle.cast(total_param, dtype='float32')
464 465 466
                total_accumulates = paddle.cast(
                    total_accumulates, dtype='float32'
                )
467 468 469 470 471 472 473 474 475 476
                average_param = total_param / total_accumulates
                paddle.assign(average_param, param)
            try:
                yield
            finally:
                if need_restore:
                    self.restore()
            return
        if executor is None:
            raise RuntimeError(
477 478
                "Executor should not be None in static graph mode."
            )
479 480 481 482 483 484 485 486 487 488 489
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    @imperative_base.no_grad
    def restore(self, executor=None):
        """
        Restore ``Parameter`` values of current model.
490

491 492 493 494 495 496 497 498
        Args:
            executor(Executor): The network executor in static-graph mode. The default value is None in dygraph mode

        Examples:

            .. code-block:: python

                import paddle
499
                inp = paddle.rand([1, 10], dtype="float32")
500 501 502 503 504 505 506
                linear = paddle.nn.Linear(10, 1)
                out = linear(inp)
                loss = paddle.mean(out)
                loss.backward()

                sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())

507
                modelaverage = paddle.incubate.ModelAverage(0.15,
508 509 510 511 512
                                                            parameters=linear.parameters(),
                                                            min_average_window=2,
                                                            max_average_window=4)
                sgd.step()
                modelaverage.step()
513

514 515 516 517 518 519 520 521 522 523 524 525
                with modelaverage.apply(need_restore=False):
                    for param in linear.parameters():
                        print(param)

                for param in linear.parameters():
                    print(param)

                modelaverage.restore()

                for param in linear.parameters():
                    print(param)
        """
J
Jiabin Yang 已提交
526
        if framework._non_static_mode():
527 528 529 530 531 532
            for param in self._parameter_list:
                param_restore = self._get_accumulator('restore', param)
                paddle.assign(param_restore, param)
            return
        if executor is None:
            raise RuntimeError(
533 534
                "Executor should not be None in static graph mode."
            )
535 536 537 538 539 540 541 542 543
        executor.run(self.restore_program)

    def _add_average_apply_op(self, block, param):
        param = block._clone_variable(param)
        grad = block._clone_variable(self._get_accumulator('restore', param))
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
544 545
            self._get_accumulator('num_accumulates', param)
        )
546
        old_num_accumulates = block._clone_variable(
547 548
            self._get_accumulator('old_num_accumulates', param)
        )
549 550 551 552 553 554
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
        tmp = layers.cast(
555 556
            x=tmp, dtype='float32' if self._dtype is None else self._dtype
        )
557
        sum = layers.cast(
558 559
            x=sum, dtype='float32' if self._dtype is None else self._dtype
        )
560 561 562 563 564 565
        layers.ops._elementwise_div(x=sum, y=tmp, out=param)

    def _add_average_restore_op(self, block, param):
        param = block._clone_variable(param)
        grad = block._clone_variable(self._get_accumulator('restore', param))
        layers.assign(input=grad, output=param)