base_cost.py 29.0 KB
Newer Older
C
caozhou 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

from collections import OrderedDict
16 17
from functools import reduce

18 19
import paddle

20
from ..utils import _get_comm_group
21
from ..process_group import get_process_group
22 23 24 25
from ..cluster import LinkType
from ..dist_tensor import DistributedTensor
from ..utils import _get_idx_in_axis
from ..dist_tensor import DistributedTensor
26

27
COMM_OP_TYPE = [
28 29 30 31 32 33
    "send_v2",
    "recv_v2",
    "c_broadcast",
    "c_allgather",
    "c_allreduce_sum",
    "c_identity",
34 35
]
NON_COMP_TYPE = ["while"] + COMM_OP_TYPE
C
caozhou 已提交
36
_g_op_cost_factory = {}
37 38


39 40 41 42
def build_comp_desc_from_op(op):
    """Build the description of computation op."""
    # NOTE: The desc is for serial op.
    from ..reshard import get_var_with_recursion
43

44
    desc = {}
45
    # The desc of concat op is {"op": "concat", "inputs": {"X": [(paddle.float32, [20, 20]), (paddle.float32, [20, 20])]}, "outputs": {"Out": [(paddle.float32, [20, 40])], "attrs": {"axis": -1}}}
46
    vars = op.block.vars
47
    desc["op"] = op.type
48 49 50 51 52
    input_desc = OrderedDict()
    for input_name in op.input_names:
        var_name_list = op.input(input_name)
        var_desc = []
        for var_name in var_name_list:
53 54
            var = get_var_with_recursion(var_name, op.block, op.block.program)
            shape = var.shape
55 56 57 58 59 60 61 62 63
            var_desc.append((var.dtype, shape))
        input_desc[input_name] = var_desc
    desc["inputs"] = input_desc

    output_desc = OrderedDict()
    for out_name in op.output_names:
        var_name_list = op.output(out_name)
        var_desc = []
        for var_name in var_name_list:
64 65
            var = get_var_with_recursion(var_name, op.block, op.block.program)
            shape = var.shape
66 67 68 69 70 71 72 73 74 75
            var_desc.append((var.dtype, shape))
        output_desc[out_name] = var_desc
    desc["outputs"] = output_desc

    attr_desc = op.all_attrs
    desc["attrs"] = attr_desc

    return desc


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
def build_comp_desc_from_dist_op(dist_op, dist_context):
    """Build descriptions of computation op distributed on the processes."""
    from ..reshard import get_var_with_recursion

    op_descs = {}
    op = dist_op.serial_op
    dist_attr = dist_op.dist_attr
    process_mesh = dist_attr.process_mesh
    assert process_mesh, "Process mesh must not be None."
    processes = process_mesh.processes
    for process in processes:
        desc = {}
        desc["op"] = op.type
        attr_desc = op.all_attrs()
        # NOTE: The attrs of desc is replica of serial op, there may be a bug if shape need to be partitioned involved in attrs.
        desc["attrs"] = attr_desc
        input_desc = OrderedDict()
        output_desc = OrderedDict()

        # Get partitioned shape of input
        for input_name in op.input_names:
            var_name_list = op.input(input_name)
            var_desc = []
            for var_name in var_name_list:
100 101 102
                var = get_var_with_recursion(
                    var_name, op.block, op.block.program
                )
103 104 105 106 107 108 109
                # Use op input_dims_mapping
                dims_mapping = dist_attr.get_input_dims_mapping(var_name)
                global_sizes = var.shape
                # NOTE: When support uneven partition, the shard_sizes will be got from dist_attr.
                shard_sizes = None
                topology = process_mesh.topology
                shape = DistributedTensor.get_local_sizes(
110 111 112 113 114 115 116
                    global_sizes,
                    dims_mapping,
                    topology,
                    processes,
                    process,
                    shard_sizes,
                )
117 118 119
                var_desc.append((var.dtype, shape))

                # For special op such as embedding and its grad op
120 121 122 123 124 125
                if (
                    op.type == "c_embedding"
                    or op.type == "lookup_table_v2"
                    or op.type == "c_embedding_grad"
                    or op.type == "lookup_table_v2_grad"
                ):
126
                    if input_name == "W":
127 128 129 130 131
                        embedding_row_dim_mapping = (
                            dist_attr.get_input_dims_mapping(
                                op.input(input_name)[0]
                            )[0]
                        )
132
                        relative_idx = _get_idx_in_axis(
133 134 135 136 137
                            processes,
                            dist_attr.process_mesh.topology,
                            embedding_row_dim_mapping,
                            process,
                        )
138 139 140 141 142 143 144 145 146 147 148 149
                        per_part_size = shape[0]
                        relative_idx = relative_idx * per_part_size
                        desc["attrs"]["start_index"] = relative_idx

            input_desc[input_name] = var_desc
        desc["inputs"] = input_desc

        for out_name in op.output_names:
            var_name_list = op.output(out_name)
            var_desc = []
            for var_name in var_name_list:
                # Use op output_dims_mapping
150 151 152
                var = get_var_with_recursion(
                    var_name, op.block, op.block.program
                )
153 154 155 156 157 158 159 160
                dist_attr = dist_op.dist_attr
                dims_mapping = dist_attr.get_output_dims_mapping(var_name)
                process_mesh = dist_attr.process_mesh
                global_sizes = var.shape
                shard_sizes = None
                processes = process_mesh.processes
                topology = process_mesh.topology
                shape = DistributedTensor.get_local_sizes(
161 162 163 164 165 166 167
                    global_sizes,
                    dims_mapping,
                    topology,
                    processes,
                    process,
                    shard_sizes,
                )
168 169 170 171 172 173 174 175 176 177 178 179
                var_desc.append((var.dtype, shape))

                # For special op such as fill_constant_batch_size_like
                if op.type == "fill_constant_batch_size_like":
                    # Modify shape attr according to how output are partitioned
                    out_name = var_name_list[0]
                    dims_mapping = dist_attr.get_output_dims_mapping(out_name)
                    process_mesh_shape = dist_attr.process_mesh.topology
                    shape_list = op.attr("shape")
                    # Modify target shape
                    for idx, axis in enumerate(dims_mapping):
                        if axis >= 0:
180 181 182
                            shape_list[idx] = (
                                shape_list[idx] // process_mesh_shape[axis]
                            )
183 184 185 186 187 188 189 190 191 192 193 194
                    desc["attrs"]["shape"] = shape_list
            output_desc[out_name] = var_desc

        desc["outputs"] = output_desc

        op_descs[process] = desc

    return op_descs


def build_comp_desc_str_for_predict(desc):
    # NOTE: The description format may change in the future.
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    def _parse_dtype(dtype):
        dtype_str = ""
        if dtype == paddle.float32:
            dtype_str = "float32"
        elif dtype == paddle.float16:
            dtype_str = "float16"
        elif dtype == paddle.int32:
            dtype_str = "int32"
        elif dtype == paddle.int64:
            dtype_str = "int64"
        elif dtype == paddle.unit8:
            dtype_str = "unit8"
        else:
            raise TypeError("Unsupported dtype {}".format(dtype))
        return dtype_str

    assert isinstance(desc, dict)
    desc_str_list = []
    desc_str = None
    dtype_str_list = []
    dims_list = []
    shape_list = []

    desc_str_list.append(desc["op"])
    inputs = desc["inputs"]
    for key, item in inputs.items():
        for dtype, shape in item:
            dtype_str_list.append(_parse_dtype(dtype))
            shape_list += list(shape)
            dims = len(shape)
            dims_list.append(dims)

    dtype_str = "*".join(dtype_str_list)
    dims_list = [str(item) for item in dims_list]
    dims_str = "*".join(dims_list)

    shape_list = [str(item) for item in shape_list]
    shape_str = "[" + ",".join(shape_list) + "]"
    desc_str_list += [dtype_str, dims_str, shape_str]
    desc_str = "_".join(desc_str_list)
235 236 237 238 239
    attrs = desc["attrs"]
    parse_result = (desc_str, attrs)
    return parse_result


240 241 242 243 244 245 246 247 248
def build_comm_desc_from_dist_op(
    op_type,
    dist_op,
    ctx,
    var_names,
    attrs=None,
    parallel_axis=None,
    group_ranks=None,
):
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    """Build descriptions of communication op distributed on the processes."""
    from ..reshard import get_var_with_recursion

    specific_op_type = []
    dist_attr = dist_op.dist_attr
    assert dist_attr, "Dist attr must not be None."
    process_mesh = dist_attr.process_mesh
    assert process_mesh, "Process mesh must not be None."

    processes = process_mesh.processes
    op_descs = {}
    for process in processes:
        rank_id = process
        desc = {}
        desc["op"] = op_type
        op_attrs = None
        comm_group_ranks = None

        if op_type not in specific_op_type:
            serial_op = dist_op.serial_op
            input_list = []
            # The var_names usually contain just one item.
            for var_name in var_names:
                dist_attr = dist_op.dist_attr
                has_found = False
                # Find var_name in serial op input or output
                for name in dist_op.serial_op.input_arg_names:
                    # If a tensor is the input of multi ops, sum the grad of all ops, so the name will be varname@RENAME@block@0 and so on.
                    if var_name in name:
                        var_name = name
                        has_found = True
                        break

                if not has_found:
                    for name in dist_op.serial_op.output_arg_names:
                        if var_name in name:
                            var_name = name
                            has_found = True
                            break
                assert has_found
289 290 291
                var = get_var_with_recursion(
                    var_name, serial_op.block, serial_op.block.program
                )
292

293 294 295 296 297
                dims_mapping = (
                    dist_attr.get_input_dims_mapping(var_name)
                    if var_name in dist_op.serial_op.input_arg_names
                    else dist_attr.get_output_dims_mapping(var_name)
                )
298 299 300 301
                global_sizes = var.shape
                shard_sizes = None
                topology = process_mesh.topology
                shape = DistributedTensor.get_local_sizes(
302 303 304 305 306 307 308
                    global_sizes,
                    dims_mapping,
                    topology,
                    processes,
                    process,
                    shard_sizes,
                )
309 310 311 312 313 314 315 316 317
                input_list.append((var.dtype, shape))

            # NOTE: The input_name of comm ops used usually is X.
            desc["inputs"] = {"X": input_list}

            # Get comm group by parallel_axis or the given group_ranks.
            if parallel_axis is not None:
                process_mesh_shape = process_mesh.topology
                process_mesh_group = process_mesh.processes
318 319 320 321 322 323
                comm_group_ranks = _get_comm_group(
                    process_mesh_group,
                    process_mesh_shape,
                    parallel_axis,
                    rank_id,
                )
324 325 326 327 328 329 330 331 332 333 334 335
            elif group_ranks is not None:
                comm_group_ranks = group_ranks
            else:
                raise ValueError(
                    "The parallel_axis and group_ranks can not be None in the same."
                )

            if attrs is not None:
                assert isinstance(attrs, dict)
                op_attrs = attrs
            else:
                op_attrs = {}
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
            desc["attrs"] = op_attrs
            desc["group_ranks"] = comm_group_ranks

            op_descs[rank_id] = desc

    return op_descs


def build_comm_desc(op_type, group_ranks, dtype, shape, attrs=None):
    """Build a comm desc directly."""
    desc = {}
    desc["op"] = op_type
    desc["group_ranks"] = group_ranks
    desc["inputs"] = {"X": [(dtype, shape)]}
    desc["attrs"] = attrs
    return desc


def build_comm_costs_from_descs(op_cost_class, ctx, processes, descs, cluster):
    """Build comm costs by descriptions"""
    comm_context = CommContext(cluster)
    group_ranks_list = []
    comm_op_cost_list = []
    for process in processes:
        desc = descs[process]
        group_ranks = desc["group_ranks"]
        if group_ranks not in group_ranks_list:
            group_ranks_list.append(group_ranks)
365 366 367
            comm_op_cost = op_cost_class(
                op_desc=desc, comm_context=comm_context
            )
368 369 370 371 372 373 374 375 376 377 378 379
            comm_op_cost_list.append(comm_op_cost)
    return comm_op_cost_list


def build_comp_costs_from_descs(op_cost_class, ctx, processes, descs, cluster):
    """Build comp costs by descriptions."""
    costs = {}
    for process in processes:
        costs[process] = op_cost_class(op_desc=descs[process], cluster=cluster)
    return costs


380 381 382
def build_dp_costs(
    result, dist_op, ctx, var_names, attrs, parallel_axis, cluster
):
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
    """DP cost contains a allreduce_sum op cost and a scale op cost"""
    # The costs will be appended in the given result.
    from ..reshard import get_var_with_recursion

    dist_attr = dist_op.dist_attr
    process_mesh = dist_attr.process_mesh
    processes = process_mesh.processes
    assert len(var_names) == 1
    vars = dist_op.serial_op.block.vars
    var_name = var_names[0]
    has_found = False
    for name in dist_op.serial_op.input_arg_names:
        if var_name in name:
            var_name = name
            has_found = True
            break

    if not has_found:
        for name in dist_op.serial_op.output_arg_names:
            if var_name in name:
                var_name = name
                has_found = True
                break
    if not has_found:
        return

    c_allreduce_sum_descs = build_comm_desc_from_dist_op(
        "c_allreduce_sum",
        dist_op,
        ctx,
        var_names,
        attrs=attrs,
415 416
        parallel_axis=parallel_axis,
    )
417
    comm_cost_list = build_comm_costs_from_descs(
418 419 420 421 422 423
        _g_op_cost_factory["c_allreduce_sum"],
        ctx,
        processes,
        c_allreduce_sum_descs,
        cluster,
    )
424 425 426 427 428 429 430 431 432 433 434 435
    result.append(comm_cost_list)

    # The scale op just on the group_ranks
    for comm_cost in comm_cost_list:
        group_ranks = comm_cost.group_ranks
        dp_degree = len(group_ranks)
        scale_costs = {}
        op_type = "scale"
        for rank in group_ranks:
            desc = {}
            desc["op"] = op_type
            desc["inputs"] = {}
436 437 438 439 440 441 442 443 444 445
            dims_mapping = (
                dist_attr.get_input_dims_mapping(var_name)
                if dist_attr.get_input_dims_mapping(var_name) is not None
                else dist_attr.get_output_dims_mapping(var_name)
            )
            var = get_var_with_recursion(
                var_name,
                dist_op.serial_op.block,
                dist_op.serial_op.block.program,
            )
446 447 448
            global_sizes = var.shape
            shard_sizes = None
            topology = process_mesh.topology
449 450 451 452 453 454 455 456
            shape = DistributedTensor.get_local_sizes(
                global_sizes,
                dims_mapping,
                topology,
                processes,
                rank,
                shard_sizes,
            )
457 458 459
            desc["inputs"]["X"] = [(var.dtype, shape)]
            attrs = {"scale": 1.0 / dp_degree}
            desc["attrs"] = attrs
460 461 462
            scale_op_cost = _g_op_cost_factory["scale"](
                op_desc=desc, cluster=cluster
            )
463 464
            scale_costs[rank] = scale_op_cost
        result.append(scale_costs)
465 466 467 468 469 470 471 472


class CommContext:
    _instance = None
    _has_instance = False

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
C
caozhou 已提交
473
            cls._instance = super().__new__(cls)
474 475 476
            _has_instance = True
        return cls._instance

C
caozhou 已提交
477 478 479 480 481
    def __init__(self, cluster):
        if CommContext._has_instance:
            return
        self.beta = {}
        self.hops = {}
C
caozhou 已提交
482
        assert cluster is not None
C
caozhou 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
        self.cluster = cluster
        # if cluster has no info about those vars, it will be set by default
        self.base_ring = None
        self.base_tree = None
        # self.base_inter_ring = None
        # self.base_inter_tree = None
        self.intra_ring = None
        self.intra_tree = None
        self.inter_ring = None
        self.inter_tree = None
        self.switch = None
        self._post_init()

    def _post_init(self):
        alpha_latency = self.cluster.alpha_latency
        if alpha_latency is None:
            # set default
            self.base_ring = 8.4
501
            self.base_tree = 0.0
502 503
            # self.base_inter_ring = 9.6
            # self.base_inter_tree = 28
C
caozhou 已提交
504 505 506 507 508 509 510 511 512 513 514 515
            # NVL in default
            self.intra_ring = 3.4
            self.intra_tree = 28
            # NET in default
            self.inter_ring = 9.6
            self.inter_tree = 28
            self.switch = 10.0
        else:
            base_ring = alpha_latency.base_ring
            self.base_ring = base_ring if base_ring is not None else 8.4

            base_tree = alpha_latency.base_tree
516
            self.base_tree = base_tree if base_tree is not None else 0.0
C
caozhou 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

            intra_ring = alpha_latency.intra_ring
            if intra_ring == LinkType.NVL:
                self.intra_ring = 3.4
            elif intra_ring == LinkType.PHB:
                self.intra_ring = 5.7
            elif intra_ring is not None:
                self.intra_ring = intra_ring
            else:
                # NVL Default
                self.intra_ring = 3.4

            intra_tree = alpha_latency.intra_tree
            if intra_tree == LinkType.NVL:
                self.intra_tree = 28
            elif intra_tree == LinkType.PHB:
                self.intra_tree = 28
            elif intra_tree is not None:
                self.intra_tree = intra_tree
            else:
                # NVL Default
                self.intra_tree = 28

            inter_ring = alpha_latency.inter_ring
            if inter_ring == LinkType.NET:
                self.inter_ring = 9.6
            elif inter_ring is not None:
                self.inter_ring = inter_ring
            else:
                # NET Default
                self.inter_ring = 9.6

            inter_tree = alpha_latency.inter_tree
            if inter_tree == LinkType.NET:
                self.inter_tree = 28
            elif inter_tree is not None:
                self.inter_tree = inter_tree
            else:
                # NET Default
                self.inter_tree = 28

            switch = alpha_latency.switch
            self.switch = switch if switch is not None else 10

            assert self.base_ring is not None
            assert self.base_tree is not None
            assert self.intra_ring is not None
            assert self.intra_tree is not None
            assert self.inter_ring is not None
            assert self.inter_tree is not None
            assert self.switch is not None

    def get_max_beta(self, ranks):
        # NOTE: Get beta by ring, even in the case of tree such as tree broadcast
        ranks = self.cluster.convert_rank_to_device_id(ranks)
572 573
        key = ','.join(map(str, sorted(ranks)))
        max_beta = None
C
caozhou 已提交
574 575
        if key in self.beta:
            max_beta = self.beta[key]
576 577 578
        else:
            for i in range(len(ranks)):
                for j in range(i + 1, len(ranks)):
579
                    forward_order_beta = self.cluster.get_beta(
580 581
                        ranks[i], ranks[j]
                    )
582
                    backward_order_beta = self.cluster.get_beta(
583 584 585 586 587 588 589
                        ranks[j], ranks[i]
                    )
                    beta = (
                        forward_order_beta
                        if forward_order_beta > backward_order_beta
                        else backward_order_beta
                    )
590
                    if max_beta is None:
C
caozhou 已提交
591
                        max_beta = beta
592 593 594
                    else:
                        if beta > max_beta:
                            max_beta = beta
C
caozhou 已提交
595
            self.beta[key] = max_beta
596 597 598

        return max_beta

C
caozhou 已提交
599 600 601 602 603 604 605 606 607 608 609
    def get_hops(self, ranks):
        key = ','.join(map(str, sorted(ranks)))
        hops = 0
        for i in range(len(ranks)):
            for j in range(i + 1, len(ranks)):
                hop = self.cluster.get_hop(ranks[i], ranks[j])
                hops += hop
        self.hops[key] = hops

        return hops

610 611 612 613 614 615 616 617 618 619 620

class Cost:
    def __init__(self, time=0, memory=0, flops=0):
        self.time = time
        self.memory = memory
        self.flops = flops

    def _check_time(self, val):
        assert val >= 0, "Time must be greater than or equal to 0."

    def _check_memory(self, val):
621 622 623
        assert (
            isinstance(val, int) and val >= 0
        ), "Memory must be int and greater than equal to 0."
624 625

    def _check_flops(self, val):
626 627 628
        assert (
            isinstance(val, int) and val >= 0
        ), "FLOPs must be int and greater than equal to 0."
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

    @property
    def time(self):
        return self._time

    @time.setter
    def time(self, val):
        self._check_time(val)
        self._time = val

    @property
    def memory(self):
        return self._memory

    @memory.setter
    def memory(self, val):
        self._check_memory(val)
        self._memory = val

    @property
    def flops(self):
        return self._flops

    @flops.setter
    def flops(self, val):
        self._check_flops(val)
        self._flops = val

    def __add__(self, rhs):
        assert isinstance(rhs, Cost)
        time = self.time + rhs.time
        memory = self.memory + rhs.memory
        flops = self.flops + rhs.flops
662
        assert time >= 0 and memory >= 0 and flops >= 0
663 664 665 666 667 668 669
        return Cost(time, memory, flops)

    def __sub__(self, rhs):
        assert isinstance(rhs, Cost)
        time = self.time - rhs.time
        memory = self.memory - rhs.memory
        flops = self.flops - rhs.flops
670
        assert time >= 0 and memory >= 0 and flops >= 0
671 672 673 674 675 676 677
        return Cost(time, memory, flops)


class OpCost:
    def __init__(self, op=None, op_desc=None):
        self._op = op
        self._op_desc = op_desc
C
caozhou 已提交
678
        self._cost = None
679 680 681 682 683 684 685 686 687

    @property
    def op(self):
        return self._op

    @property
    def op_desc(self):
        return self._op_desc

C
caozhou 已提交
688 689 690 691 692 693 694 695 696 697 698 699
    @property
    def time(self):
        return self.cost.time

    @property
    def memory(self):
        return self.cost.memory

    @property
    def flops(self):
        return self.cost.flops

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
    @property
    def cost(self):
        return self._cost

    def calc_time(self):
        return 0

    def calc_memory(self):
        return 0

    def calc_flops(self):
        return 0

    def calc_cost(self):
        time = self.calc_time()
        memory = self.calc_memory()
        flops = self.calc_flops()
        cost = Cost(time, memory, flops)
        return cost

C
caozhou 已提交
720 721 722 723 724 725 726 727 728
    def __add__(self, rhs):
        assert isinstance(rhs, (OpCost, Cost))
        time = 0
        memory = 0
        flops = 0
        if isinstance(rhs, OpCost):
            time = self.cost.time + rhs.cost.time
            memory = self.cost.memory + rhs.cost.memory
            flops = self.cost.flops + rhs.cost.flops
729
            assert time >= 0 and memory >= 0 and flops >= 0
C
caozhou 已提交
730 731 732 733
        elif isinstance(rhs, Cost):
            time = self.time + rhs.time
            memory = self.memory + rhs.memory
            flops = self.flops + rhs.flops
734
            assert time >= 0 and memory >= 0 and flops >= 0
C
caozhou 已提交
735 736 737 738 739 740 741 742 743 744 745
        return Cost(time, memory, flops)

    def __sub__(self, rhs):
        assert isinstance(rhs, (OpCost, Cost))
        time = 0
        memory = 0
        flops = 0
        if isinstance(rhs, OpCost):
            time = self.cost.time - rhs.cost.time
            memory = self.cost.memory - rhs.cost.memory
            flops = self.cost.flops - rhs.cost.flops
746
            assert time >= 0 and memory >= 0 and flops >= 0
C
caozhou 已提交
747 748 749 750
        elif isinstance(rhs, Cost):
            time = self.time - rhs.time
            memory = self.memory - rhs.memory
            flops = self.flops - rhs.flops
751
            assert time >= 0 and memory >= 0 and flops >= 0
C
caozhou 已提交
752 753
        return Cost(time, memory, flops)

754 755 756 757 758 759 760 761

class CommOpCost(OpCost):
    OP_TYPE = "COMM"

    def __init__(self, op=None, op_desc=None, comm_context=None):
        super(CommOpCost, self).__init__(op=op, op_desc=op_desc)
        self._check_comm_op_type()
        self._comm_context = comm_context
C
caozhou 已提交
762 763 764 765 766 767
        self._group_ranks = None
        self._comm_count = None
        self._hops = None
        self._rank_count = len(self.group_ranks)
        self._machine_count = None
        self._cost = self.calc_cost()
768 769 770 771 772

    @property
    def comm_context(self):
        return self._comm_context

C
caozhou 已提交
773 774
    @property
    def comm_count(self):
775 776
        from ..reshard import get_var_with_recursion

C
caozhou 已提交
777 778 779 780 781 782 783
        if self._comm_count is None:
            dtype = None
            shape = None
            if self.op is not None:
                vars = self.op.block.vars
                # NOTE: The tensor communicated input_name is "X" in default. Otherwise, this function should be overrided
                var_name = self.op.input("X")[0]
784 785 786
                var = get_var_with_recursion(
                    var_name, self.op.block, self.program
                )
C
caozhou 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
                dtype = var.dtype
                shape = var.shape
            elif self.op_desc is not None:
                dtype = self.op_desc["inputs"]["X"][0][0]
                shape = self.op_desc["inputs"]["X"][0][1]

            factor = None
            if dtype == paddle.float32 or dtype == paddle.int32:
                factor = 4
            elif dtype == paddle.int64:
                factor = 8
            elif dtype == paddle.uint8:
                factor = 1
            elif dtype == paddle.float16:
                factor = 2
802 803
            elif dtype == paddle.bool:
                factor = 8
C
caozhou 已提交
804
            else:
805
                raise ValueError("Unsupported comm dtype {}".format(dtype))
C
caozhou 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819
            comm_count = reduce(lambda x, y: x * y, shape) * factor
            self._comm_count = comm_count

        return self._comm_count

    @property
    def rank_count(self):
        return self._rank_count

    @property
    def machine_count(self):
        if self._machine_count is None:
            cluster = self._comm_context.cluster
            self._machine_count = cluster.get_involved_machine_count(
820 821
                self.group_ranks
            )
C
caozhou 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
        return self._machine_count

    @property
    def hops(self):
        if self._hops is None:
            self._hops = self.comm_context.get_hops(self.group_ranks)
        return self._hops

    @property
    def group_ranks(self):
        if self._group_ranks is None:
            if self.op_desc is not None:
                self._group_ranks = self.op_desc["group_ranks"]
            elif self.op is not None:
                ring_id = op.attrs("ring_id")
                process_group = get_process_group(ring_id)
                if process_group is None:
                    raise ValueError(
840 841 842 843
                        "There not exists process group whose ring_id is {}.".format(
                            ring_id
                        )
                    )
C
caozhou 已提交
844 845 846
                self._group_ranks = process_group.ranks
        return self._group_ranks

847 848 849 850
    @classmethod
    def _check_comm_op_type(cls):
        if cls.OP_TYPE != "COMM":
            if cls.OP_TYPE not in COMM_OP_TYPE:
851 852
                raise TypeError(
                    "Please Check op type in {}, but got {}.".format(
853 854 855
                        COMM_OP_TYPE, cls.OP_TYPE
                    )
                )
856 857 858 859 860 861 862 863


class CompOpCost(OpCost):
    OP_TYPE = "COMP"

    def __init__(self, op=None, op_desc=None, cluster=None):
        super(CompOpCost, self).__init__(op=op, op_desc=op_desc)
        self._check_comp_op_type()
C
caozhou 已提交
864
        self._cost = self.calc_cost()
865 866 867 868 869 870
        self.cluster = cluster

    @classmethod
    def _check_comp_op_type(cls):
        if cls.OP_TYPE != "COMP":
            if cls.OP_TYPE in NON_COMP_TYPE:
871 872
                raise TypeError(
                    "Please Check op type not in {}, but got {}.".format(
873 874 875
                        NON_COMP_TYPE, cls.OP_TYPE
                    )
                )
876 877 878 879 880 881


def register_op_cost(cls):
    op_type = cls.OP_TYPE

    def register(op_type):
C
caozhou 已提交
882 883
        global _g_op_cost_factory
        _g_op_cost_factory[op_type] = cls
884

C
caozhou 已提交
885 886
    register(op_type)
    return cls
887 888


C
caozhou 已提交
889
def calc_time_by_modeling(op=None, desc=None, cluster=None):
890 891
    op_type = op.type if op is not None else desc["op"]
    if op_type in COMM_OP_TYPE:
892 893 894
        op_cost = _g_op_cost_factory[op_type](
            op=op, op_desc=desc, comm_context=CommContext(cluster)
        )
895
    elif op_type not in NON_COMP_TYPE:
896 897 898
        op_cost = _g_op_cost_factory[op_type](
            op=op, op_desc=desc, cluster=cluster
        )
899 900
    time = op_cost.calc_time()
    return time