quantize_mkldnn_op.cc 4.6 KB
Newer Older
X
xiaoli.liu@intel.com 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "dnnl.hpp"
X
xiaoli.liu@intel.com 已提交
16 17 18
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/quantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaoli.liu@intel.com 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
X
xiaoli.liu@intel.com 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26
using dnnl::memory;
using dnnl::primitive;
using dnnl::reorder;
X
xiaoli.liu@intel.com 已提交
27 28 29
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
30
using dnnl::stream;
X
xiaoli.liu@intel.com 已提交
31 32 33 34 35 36 37 38
using platform::GetMKLDNNFormat;

template <typename T>
class QuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto scale_data = ctx.Attr<float>("Scale");
39 40
    auto scale_shift = ctx.Attr<float>("Shift");
    bool with_shift = scale_shift != 0.0f;
X
xiaoli.liu@intel.com 已提交
41
    auto* output = ctx.Output<Tensor>("Output");
42 43 44 45 46 47 48 49 50 51 52 53

    PADDLE_ENFORCE_NE(
        scale_data, 0.0f,
        platform::errors::InvalidArgument("Quantization scale cannot be 0.0"));
    PADDLE_ENFORCE_GE(scale_shift, 0,
                      platform::errors::Unimplemented(
                          "Quantization shift must be nonnegative."));
    PADDLE_ENFORCE_LE(
        scale_shift, 255,
        platform::errors::Unimplemented(
            "Quantization shift must be less than or equal to 255."));

X
xiaoli.liu@intel.com 已提交
54 55 56 57 58
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();

    std::vector<primitive> pipeline;
59 60
    auto src_tz = phi::vectorize<int64_t>(input->dims());
    auto dst_tz = phi::vectorize<int64_t>(output->dims());
X
xiaoli.liu@intel.com 已提交
61 62 63

    const T* input_data = input->data<T>();

64
    bool is_negative_input = ctx.Attr<bool>("is_negative_input");
65
    bool bfloat16 = ctx.Attr<bool>("bfloat16");
66

67
    // TODO(jczaja): Refactor with Acquire API
68 69
    std::shared_ptr<dnnl::memory> src_memory;
    std::shared_ptr<dnnl::memory> dst_memory;
70
    std::shared_ptr<reorder> reorder_p;
71 72 73 74

    std::string out_layout = ctx.Attr<std::string>("output_format");
    MKLDNNMemoryFormat out_format =
        platform::data_format_to_memory_format(out_layout);
75
    dnnl::primitive_attr attri;
76 77 78 79
    int mask = 0;
    attri.set_output_scales(mask, {scale_data});

    if (with_shift) {
80
      dnnl::post_ops post_operations;
81 82 83 84 85 86 87 88 89
      post_operations.append_sum();
      attri.set_post_ops(post_operations);
      uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
      // memset casts scale_shift to unsigned char (uint8_t) internally
      std::memset(output_data, scale_shift, output->numel());
    }

    auto src_md = platform::MKLDNNMemDesc({src_tz}, memory::data_type::f32,
                                          input->format());
90 91
    src_memory = std::make_shared<dnnl::memory>(src_md, engine,
                                                to_void_cast<T>(input_data));
92

93
    std::shared_ptr<dnnl::memory::desc> dst_md;
94 95 96 97 98 99
    if (bfloat16) {
      platform::SetDstMemoryQuantized<paddle::platform::bfloat16>(
          ctx, output, dst_tz, engine, dst_md, dst_memory, out_format);
    } else if (is_negative_input && !with_shift) {
      platform::SetDstMemoryQuantized<int8_t>(ctx, output, dst_tz, engine,
                                              dst_md, dst_memory, out_format);
X
xiaoli.liu@intel.com 已提交
100
    } else {
101 102
      platform::SetDstMemoryQuantized<uint8_t>(ctx, output, dst_tz, engine,
                                               dst_md, dst_memory, out_format);
X
xiaoli.liu@intel.com 已提交
103
    }
104 105 106
    auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
        new reorder::primitive_desc(*src_memory, *dst_memory, attri));
    reorder_p = std::shared_ptr<reorder>(new reorder(*reorder_pd));
107

108
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
109 110
    reorder_p->execute(astream, *src_memory, *dst_memory);
    astream.wait();
A
Adam 已提交
111

X
xiaoli.liu@intel.com 已提交
112 113 114 115 116 117 118 119 120 121
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory));
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(quantize, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::QuantOpKernel<float>);