dequantize_mkldnn_op.cc 5.4 KB
Newer Older
X
xiaoli.liu@intel.com 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "dnnl.hpp"
X
xiaoli.liu@intel.com 已提交
16 17 18
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/dequantize_op.h"
19
#include "paddle/fluid/platform/errors.h"
X
xiaoli.liu@intel.com 已提交
20
#include "paddle/fluid/platform/mkldnn_helper.h"
21
#include "paddle/fluid/platform/mkldnn_reuse.h"
X
xiaoli.liu@intel.com 已提交
22 23 24 25

namespace paddle {
namespace operators {

26 27 28
using dnnl::memory;
using dnnl::primitive;
using dnnl::reorder;
X
xiaoli.liu@intel.com 已提交
29 30 31
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
32
using dnnl::stream;
X
xiaoli.liu@intel.com 已提交
33 34 35 36 37 38 39 40
using platform::GetMKLDNNFormat;

template <typename T>
class DeQuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto scale_data = ctx.Attr<float>("Scale");
41 42
    auto scale_shift = ctx.Attr<float>("Shift");
    bool with_shift = scale_shift != 0.0f;
X
xiaoli.liu@intel.com 已提交
43
    auto* output = ctx.Output<Tensor>("Output");
44 45 46 47 48 49 50 51 52 53 54 55

    PADDLE_ENFORCE_NE(scale_data, 0.0f,
                      platform::errors::InvalidArgument(
                          "Dequantization scale cannot be 0.0"));
    PADDLE_ENFORCE_GE(scale_shift, 0,
                      platform::errors::Unimplemented(
                          "Dequantization shift must be nonnegative."));
    PADDLE_ENFORCE_LE(
        scale_shift, 255,
        platform::errors::Unimplemented(
            "Dequantization shift must be less than or equal to 255."));

X
xiaoli.liu@intel.com 已提交
56 57 58 59 60 61
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();

    const T* input_data = input->data<T>();
    float* output_data = output->mutable_data<float>(ctx.GetPlace());
62 63

    float reorder_shift = -scale_shift / scale_data;
X
xiaoli.liu@intel.com 已提交
64

65 66
    auto src_tz = phi::vectorize<int64_t>(input->dims());
    auto dst_tz = phi::vectorize<int64_t>(output->dims());
67 68
    dnnl::memory::data_type src_dt = paddle::framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(input->dtype()));
69
    MKLDNNMemoryFormat src_fmt = input->format();
70 71 72 73 74

    std::string key =
        platform::CreateKey(dev_ctx, src_dt, src_tz, ctx.OutputName("Output"));
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);

75 76 77
    const std::string key_prim = key + "@r";
    const std::string key_src_mem = key + "@s";
    const std::string key_dst_mem = key + "@d";
78

79 80
    std::shared_ptr<dnnl::memory> src_memory;
    std::shared_ptr<dnnl::memory> dst_memory;
81 82 83 84
    std::shared_ptr<reorder> reorder_p;
    reorder_p = std::static_pointer_cast<reorder>(dev_ctx.GetBlob(key_prim));

    if (reorder_p == nullptr) {
85
      dnnl::primitive_attr attri;
86
      int mask = 0;
87 88 89 90
      float reorder_scale = 1. / scale_data;
      attri.set_output_scales(mask, {reorder_scale});

      if (with_shift) {
91
        dnnl::post_ops post_operations;
92 93 94 95
        post_operations.append_sum();
        attri.set_post_ops(post_operations);
        std::fill(output_data, output_data + output->numel(), reorder_shift);
      }
96 97

      auto src_md = platform::MKLDNNMemDesc({src_tz}, src_dt, src_fmt);
98 99
      src_memory = std::make_shared<dnnl::memory>(src_md, engine,
                                                  to_void_cast<T>(input_data));
A
Adam 已提交
100 101 102 103 104 105

      auto dst_md =
          platform::MKLDNNMemDesc({dst_tz}, memory::data_type::f32,
                                  platform::MKLDNNFormatForSize(
                                      dst_tz.size(), MKLDNNMemoryFormat::nchw));

106
      dst_memory = std::make_shared<dnnl::memory>(
A
Adam 已提交
107
          dst_md, engine, to_void_cast<float>(output_data));
108 109

      auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
A
Adam 已提交
110 111
          new reorder::primitive_desc(*src_memory, *dst_memory, attri));
      reorder_p = std::shared_ptr<reorder>(new reorder(*reorder_pd));
112 113 114 115
      dev_ctx.SetBlob(key_prim, reorder_p);
      dev_ctx.SetBlob(key_src_mem, src_memory);
      dev_ctx.SetBlob(key_dst_mem, dst_memory);
    } else {
116 117
      src_memory =
          std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(key_src_mem));
118 119
      src_memory->set_data_handle(to_void_cast<T>(input_data));

120 121
      dst_memory =
          std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(key_dst_mem));
122 123
      if (with_shift)
        std::fill(output_data, output_data + output->numel(), reorder_shift);
124 125
      dst_memory->set_data_handle(output->mutable_data<float>(ctx.GetPlace()));
    }
X
xiaoli.liu@intel.com 已提交
126

127
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
128 129
    reorder_p->execute(astream, *src_memory, *dst_memory);
    astream.wait();
X
xiaoli.liu@intel.com 已提交
130

131
    output->set_layout(DataLayout::kMKLDNN);
132
    output->set_format(GetMKLDNNFormat(*dst_memory));
X
xiaoli.liu@intel.com 已提交
133 134 135 136 137 138 139 140 141
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(dequantize, MKLDNN, ::paddle::platform::CPUPlace,
142 143
                   ops::DeQuantOpKernel<uint8_t>, ops::DeQuantOpKernel<int8_t>,
                   ops::DeQuantOpKernel<paddle::platform::bfloat16>);