renorm_impl.h 13.2 KB
Newer Older
S
seemingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/core/device_context.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"

#if defined(__NVCC__) || defined(__HIPCC__)
#include "paddle/phi/kernels/funcs/reduce_function.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"
#ifdef __NVCC__
#include "cub/cub.cuh"
#else
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
#endif

namespace phi {
namespace funcs {

template <typename T>
void RenormFunc(const phi::CPUContext& ctx,
                const T* x_data,
                T* out_data,
                float p,
                int dim,
                float max_norm,
                int64_t dimension_each,
                phi::DDim& input_dims,
                int64_t numel) {
  auto dim_size = input_dims.size();
  int64_t dim_divisor = 1;
  for (int i = dim + 1; i < dim_size; i++) dim_divisor *= input_dims[i];

  std::vector<T> dim_value(dimension_each,
                           0);  // dim_value = (x1^p + x2^p + x3^p....)^(1/p)

  int64_t index = 0, dim_index = 0;
  for (int64_t i = 0; i < numel; i++) {
    dim_value[dim_index] += std::pow(std::abs(x_data[i]), p);
    index++;
    if (index == dim_divisor) {
      dim_index++;
      if (dim_index == dimension_each) {
        dim_index = 0;
      }
      index = 0;
    }
  }
  for (int64_t i = 0; i < dimension_each; i++) {
    dim_value[i] = std::pow(dim_value[i], 1.0 / p);
    if (dim_value[i] > max_norm)
      dim_value[i] = max_norm / dim_value[i];
    else
      dim_value[i] = 1.0;
  }
  index = dim_index = 0;
  for (int64_t i = 0; i < numel; i++) {
    out_data[i] = dim_value[dim_index] < 1.0 ? dim_value[dim_index] * x_data[i]
                                             : x_data[i];
    index++;
    if (index == dim_divisor) {
      dim_index++;
      if (dim_index == dimension_each) {
        dim_index = 0;
      }
      index = 0;
    }
  }
}

template <typename T>
void RenormGradFunc(const phi::CPUContext& ctx,
                    const T* x_data,
                    const T* dout_data,
                    T* dx_data,
                    float p,
                    int dim,
                    float max_norm,
                    int64_t dimension_each,
                    phi::DDim& input_dims,
                    int64_t numel) {
  auto dim_size = input_dims.size();
  int64_t dim_divisor = 1;
  for (int i = dim + 1; i < dim_size; i++) dim_divisor *= input_dims[i];
  std::vector<T> dim_value(dimension_each, 0), dim_power_sum(dimension_each, 0),
      weight_derivative(dimension_each, 0.0);
  int64_t index = 0, dim_index = 0;
  for (int64_t i = 0; i < numel; i++) {
    dim_value[dim_index] += std::pow(std::abs(x_data[i]), p);
    index++;
    if (index == dim_divisor) {
      dim_index++;
      if (dim_index == dimension_each) {
        dim_index = 0;
      }
      index = 0;
    }
  }
  for (int64_t i = 0; i < dimension_each; i++) {
    auto temp = std::pow(dim_value[i], 1.0 / p);
    if (temp > max_norm) {
      dim_power_sum[i] =
          std::pow(dim_value[i], (T)(-1.0 - 1.0 / p)) * -1 * max_norm;
      dim_value[i] = max_norm / temp;
    } else
      dim_value[i] = 1.0;
  }
  index = dim_index = 0;
  for (int64_t i = 0; i < numel; i++) {
    dx_data[i] = dim_value[dim_index] * dout_data[i];
    weight_derivative[dim_index] += x_data[i] * dout_data[i];
    index++;
    if (index == dim_divisor) {
      dim_index++;
      if (dim_index == dimension_each) {
        dim_index = 0;
      }
      index = 0;
    }
  }
  index = dim_index = 0;
  for (int64_t i = 0; i < numel; i++) {
    dx_data[i] += weight_derivative[dim_index] * dim_power_sum[dim_index] *
                  std::pow(std::abs(x_data[i]), p - 1.0) *
                  (x_data[i] >= 0 ? 1 : -1);
    index++;
    if (index == dim_divisor) {
      dim_index++;
      if (dim_index == dimension_each) {
        dim_index = 0;
      }
      index = 0;
    }
  }
}

#if defined(__NVCC__) || defined(__HIPCC__)
__device__ __forceinline__ float inline_pow(float base, float exponent) {
  return pow(base, exponent);
}

__device__ __forceinline__ double inline_pow(double base, double exponent) {
  return pow(base, exponent);
}

__device__ __forceinline__ float inline_abs(float x) { return abs(x); }
__device__ __forceinline__ double inline_abs(double x) { return abs(x); }

template <typename Tx, typename Ty = Tx>
struct UnsignedPowFunctor {
  HOSTDEVICE explicit inline UnsignedPowFunctor(float porder) {
    this->porder = porder;
  }
  HOSTDEVICE inline Ty operator()(const Tx x) const {
    return static_cast<Ty>(inline_pow(inline_abs(x), static_cast<Tx>(porder)));
  }
  float porder;
};

template <typename T>
__global__ void RenormKernelFunc3(int64_t size,
                                  T* dim_value,
                                  float p,
                                  float max_norm) {
  int64_t i = ((int64_t)blockIdx.x) * blockDim.x + threadIdx.x;
  if (i < size) {
    T temp = pow(dim_value[i], (T)(1.0 / p));
    dim_value[i] = 1.0;
    if (temp > max_norm) dim_value[i] = max_norm / temp;
  }
}

template <typename T>
__global__ void RenormKernelFunc4(const T* x_data,
                                  T* out_data,
                                  int64_t size,
                                  T* dim_value,
                                  int64_t dimension_each,
                                  int64_t dim_divisor) {
  int64_t i = ((int64_t)blockIdx.x) * blockDim.x + threadIdx.x;
  auto dim_index = i / dim_divisor % dimension_each;
  if (i < size) {
    if (dim_value[dim_index] < 1.0)
      out_data[i] = dim_value[dim_index] * x_data[i];
    else
      out_data[i] = x_data[i];
  }
}

template <typename T>
__global__ void RenormElementwisePow(const T* x_data,
                                     T* pow_value,
                                     int64_t size,
                                     float p) {
  int64_t i = ((int64_t)blockIdx.x) * blockDim.x + threadIdx.x;
  if (i < size) {
    pow_value[i] = pow(abs(x_data[i]), (T)p);
  }
}

template <typename T>
__global__ void RenormGradKernelFunc1(const T* x_data,
                                      const T* dout_data,
                                      T* pow_value,
                                      T* mul_value,
                                      int64_t size,
                                      int64_t dimension_each,
                                      float p,
                                      int64_t dim_divisor) {
  int64_t i = ((int64_t)blockIdx.x) * blockDim.x + threadIdx.x;
  auto dim_index = i / dim_divisor % dimension_each;
  if (i < size) {
    pow_value[i] = pow(abs(x_data[i]), (T)p);
    mul_value[i] = x_data[i] * dout_data[i];
  }
}

template <typename T>
__global__ void RenormGradKernelFunc2(const T* x_data,
                                      const T* dout_data,
                                      T* dx_data,
                                      int64_t size,
                                      T* dim_value,
                                      T* dim_power_sum,
                                      T* weight_derivative,
                                      int64_t dimension_each,
                                      float p,
                                      float max_norm,
                                      int64_t dim_divisor) {
  int64_t i = ((int64_t)blockIdx.x) * blockDim.x + threadIdx.x;
  auto dim_index = i / dim_divisor % dimension_each;
  if (i < dimension_each) {
    dim_power_sum[i] = 0;
    auto temp = pow(dim_value[i], (T)(1.0 / p));
    if (temp > max_norm) {
      dim_power_sum[i] = pow(dim_value[i], (T)(-1.0 - 1.0 / p)) * -1 * max_norm;
      dim_value[i] = max_norm / temp;
    } else {
      dim_value[i] = 1.0;
    }
  }
  __syncthreads();
  if (i < size) {
    dx_data[i] = dim_value[dim_index] * dout_data[i];
    dx_data[i] = dx_data[i] + weight_derivative[dim_index] *
                                  dim_power_sum[dim_index] *
                                  pow(abs(x_data[i]), T(p - 1.0)) *
                                  (x_data[i] >= 0 ? 1 : -1);
  }
}

template <typename T>
void RenormFunc(const phi::GPUContext& ctx,
                const T* x_data,
                T* out_data,
                float p,
                int dim,
                float max_norm,
                int64_t dimension_each,
                phi::DDim& input_dims,
                int64_t numel) {
  auto dim_size = input_dims.size();
  DenseTensor pow_value, dim_value;
  int64_t dim_divisor = 1, pre_mul = 1;
  for (int i = dim + 1; i < dim_size; i++) dim_divisor *= input_dims[i];
  for (int i = 0; i < dim; i++) pre_mul *= input_dims[i];
  pow_value.Resize(phi::make_ddim({pre_mul, dimension_each, dim_divisor}));
  dim_value.Resize(phi::make_ddim({dimension_each}));
  T* pow_value_data = ctx.template Alloc<T>(&pow_value);
  T* dim_value_data = ctx.template Alloc<T>(&dim_value);
  auto stream = ctx.stream();
  int block = std::min(numel, static_cast<int64_t>(256));
  int grid = (numel + block - 1) / block;
  RenormElementwisePow<T>
      <<<grid, block, 0, stream>>>(x_data, pow_value_data, numel, p);
  int block2 = std::min(dimension_each, static_cast<int64_t>(256));
  int grid2 = (dimension_each + block2 - 1) / block2;
  std::vector<int> reduce_axis = {0, 2};
  phi::funcs::ReduceKernel<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
      ctx, pow_value, &dim_value, kps::IdentityFunctor<T>(), reduce_axis);
  RenormKernelFunc3<T>
      <<<grid2, block2, 0, stream>>>(numel, dim_value_data, p, max_norm);
  RenormKernelFunc4<T><<<grid, block, 0, stream>>>(
      x_data, out_data, numel, dim_value_data, dimension_each, dim_divisor);
}

template <typename T>
void RenormGradFunc(const phi::GPUContext& ctx,
                    const T* x_data,
                    const T* dout_data,
                    T* dx_data,
                    float p,
                    int dim,
                    float max_norm,
                    int64_t dimension_each,
                    phi::DDim& input_dims,
                    int64_t numel) {
  auto dim_size = input_dims.size();
  int64_t dim_divisor = 1, pre_mul = 1;
  for (int i = dim + 1; i < dim_size; i++) dim_divisor *= input_dims[i];
  for (int i = 0; i < dim; i++) pre_mul *= input_dims[i];
  DenseTensor pow_value, mul_value, dim_value, dim_power_sum, weight_derivative;
  pow_value.Resize(phi::make_ddim({pre_mul, dimension_each, dim_divisor}));
  mul_value.Resize(phi::make_ddim({pre_mul, dimension_each, dim_divisor}));
  dim_value.Resize(phi::make_ddim({dimension_each}));
  dim_power_sum.Resize(phi::make_ddim({dimension_each}));
  weight_derivative.Resize(phi::make_ddim({dimension_each}));
  auto stream = ctx.stream();
  int block = std::min(numel, static_cast<int64_t>(256));
  int grid = (numel + block - 1) / block;
  T* pow_value_data = ctx.template Alloc<T>(&pow_value);
  T* mul_value_data = ctx.template Alloc<T>(&mul_value);
  T* dim_value_data = ctx.template Alloc<T>(&dim_value);
  T* dim_power_sum_data = ctx.template Alloc<T>(&dim_power_sum);
  T* weight_derivative_data = ctx.template Alloc<T>(&weight_derivative);
  RenormGradKernelFunc1<T><<<grid, block, 0, stream>>>(x_data,
                                                       dout_data,
                                                       pow_value_data,
                                                       mul_value_data,
                                                       numel,
                                                       dimension_each,
                                                       p,
                                                       dim_divisor);
  std::vector<int> reduce_axis = {0, 2};
  phi::funcs::ReduceKernel<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
      ctx, pow_value, &dim_value, kps::IdentityFunctor<T>(), reduce_axis);
  phi::funcs::ReduceKernel<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
      ctx,
      mul_value,
      &weight_derivative,
      kps::IdentityFunctor<T>(),
      reduce_axis);
  RenormGradKernelFunc2<T><<<grid, block, 0, stream>>>(x_data,
                                                       dout_data,
                                                       dx_data,
                                                       numel,
                                                       dim_value_data,
                                                       dim_power_sum_data,
                                                       weight_derivative_data,
                                                       dimension_each,
                                                       p,
                                                       max_norm,
                                                       dim_divisor);
}
#endif

}  // namespace funcs
}  // namespace phi