tril_triu_kernel.cc 1.8 KB
Newer Older
Y
ykkk2333 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/tril_triu_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void TrilTriuKernel(const Context& ctx,
                    const DenseTensor& x,
                    int diagonal,
                    bool lower,
                    DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;
  ctx.template Alloc<T>(out);
  auto xshape = vectorize<int>(x.dims());
  int r = 0;
  if (lower) {
    r = xpu::tril(ctx.x_context(),
                  reinterpret_cast<const XPUType*>(x.data<T>()),
                  reinterpret_cast<XPUType*>(out->data<T>()),
                  xshape,
                  diagonal);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "tril_op");
  } else {
    r = xpu::triu(ctx.x_context(),
                  reinterpret_cast<const XPUType*>(x.data<T>()),
                  reinterpret_cast<XPUType*>(out->data<T>()),
                  xshape,
                  diagonal);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "triu_op");
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(
    tril_triu, XPU, ALL_LAYOUT, phi::TrilTriuKernel, int, float) {}