blas_impl.cu.h 35.7 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/dynload/cublas.h"
19

20 21 22
#include "paddle/fluid/platform/gpu_info.h"

DECLARE_bool(enable_cublas_tensor_op_math);
Y
Yu Yang 已提交
23 24 25 26 27 28 29 30 31 32 33 34

namespace paddle {
namespace operators {
namespace math {

template <typename T>
struct CUBlas;

template <>
struct CUBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
35
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasSgemm(args...));
Y
Yu Yang 已提交
36
  }
Y
Yu Yang 已提交
37 38 39

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
40
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasSaxpy(args...));
Y
Yu Yang 已提交
41 42
  }

43 44
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
45
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasSscal(args...));
46 47 48 49
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
50
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasScopy(args...));
51 52
  }

Y
Yu Yang 已提交
53 54
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
55
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasSgemv(args...));
Y
Yu Yang 已提交
56 57 58
  }

  template <typename... ARGS>
59
  static void GEMM_STRIDED_BATCH(ARGS... args) {
Y
Yu Yang 已提交
60
#if CUDA_VERSION >= 8000
61 62
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cublasSgemmStridedBatched(args...));
Y
Yu Yang 已提交
63
#else
64 65
    PADDLE_THROW(platform::errors::Unimplemented(
        "SgemmStridedBatched is not supported on cuda <= 7.5"));
66 67 68 69 70 71 72 73 74 75 76 77
#endif
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
  static void GEMM_EX(platform::CUDADeviceContext *dev_ctx,
                      cublasOperation_t transa, cublasOperation_t transb, int m,
                      int n, int k, const float *alpha, const void *A,
                      cudaDataType_t Atype, int lda, const void *B,
                      cudaDataType_t Btype, int ldb, const float *beta, void *C,
                      cudaDataType_t Ctype, int ldc) {
78 79 80
// Because the gcc 4.8 doesn't expand template parameter pack that
// appears in a lambda-expression, I can not use template parameter pack
// here.
81
#if CUDA_VERSION >= 8000
82 83 84
    VLOG(5) << "use_tensor_op_math: "
            << (dev_ctx->tensor_core_available() ? "True" : "False");
    dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
85
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasSgemmEx(
86 87 88
          handle, transa, transb, m, n, k, alpha, A, Atype, lda, B, Btype, ldb,
          beta, C, Ctype, ldc));
    });
89
#else
90 91
    PADDLE_THROW(platform::errors::Unimplemented(
        "cublasSgemmEx is not supported on cuda <= 7.5"));
Y
Yu Yang 已提交
92 93
#endif
  }
G
Guo Sheng 已提交
94 95 96 97 98

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasStrsm(args...));
  }
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

  template <typename... ARGS>
  static void GETRF_BATCH(ARGS... args) {
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cublasSgetrfBatched(args...));
  }

  template <typename... ARGS>
  static void GETRI_BATCH(ARGS... args) {
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cublasSgetriBatched(args...));
  }

  template <typename... ARGS>
  static void MATINV_BATCH(ARGS... args) {
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cublasSmatinvBatched(args...));
  }
Y
Yu Yang 已提交
117 118 119 120 121 122
};

template <>
struct CUBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
123
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasDgemm(args...));
Y
Yu Yang 已提交
124
  }
Y
Yu Yang 已提交
125 126 127

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
128
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasDaxpy(args...));
Y
Yu Yang 已提交
129 130
  }

131 132
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
133
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasDscal(args...));
134 135 136 137
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
138
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasDcopy(args...));
139 140
  }

Y
Yu Yang 已提交
141 142
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
143
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasDgemv(args...));
Y
Yu Yang 已提交
144 145 146
  }

  template <typename... ARGS>
147
  static void GEMM_STRIDED_BATCH(ARGS... args) {
Y
Yu Yang 已提交
148
#if CUDA_VERSION >= 8000
149 150
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cublasDgemmStridedBatched(args...));
Y
Yu Yang 已提交
151
#else
152 153
    PADDLE_THROW(platform::errors::Unimplemented(
        "DgemmStridedBatched is not supported on cuda <= 7.5"));
Y
Yu Yang 已提交
154 155
#endif
  }
156 157 158

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
159 160
    PADDLE_THROW(platform::errors::Unimplemented(
        "Currently there are not cublasDgemmEx."));
161
  }
G
Guo Sheng 已提交
162 163 164 165 166

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasDtrsm(args...));
  }
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

  template <typename... ARGS>
  static void GETRF_BATCH(ARGS... args) {
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cublasDgetrfBatched(args...));
  }

  template <typename... ARGS>
  static void GETRI_BATCH(ARGS... args) {
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cublasDgetriBatched(args...));
  }

  template <typename... ARGS>
  static void MATINV_BATCH(ARGS... args) {
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cublasDmatinvBatched(args...));
  }
Y
Yu Yang 已提交
185 186 187 188
};

template <>
struct CUBlas<platform::float16> {
Y
Yu Yang 已提交
189 190 191 192 193 194 195
  using float16 = platform::float16;

  static void GEMM(cublasHandle_t handle, cublasOperation_t transa,
                   cublasOperation_t transb, int m, int n, int k,
                   const float16 *alpha, const float16 *A, int lda,
                   const float16 *B, int ldb, const float16 *beta, float16 *C,
                   int ldc) {
196
    PADDLE_ENFORCE_CUDA_SUCCESS(
Y
Yu Yang 已提交
197 198 199 200 201 202
        platform::dynload::cublasHgemm(handle, transa, transb, m, n, k,
                                       reinterpret_cast<const __half *>(alpha),
                                       reinterpret_cast<const __half *>(A), lda,
                                       reinterpret_cast<const __half *>(B), ldb,
                                       reinterpret_cast<const __half *>(beta),
                                       reinterpret_cast<__half *>(C), ldc));
Y
Yu Yang 已提交
203
  }
Y
Yu Yang 已提交
204

205 206 207 208 209 210 211 212 213 214
  static void GEMM_STRIDED_BATCH(cublasHandle_t handle,
                                 cublasOperation_t transa,
                                 cublasOperation_t transb, int m, int n, int k,
                                 const float16 *alpha, const float16 *A,
                                 int lda, long long int strideA,  // NOLINT
                                 const float16 *B,                // NOLINT
                                 int ldb, long long int strideB,  // NOLINT
                                 const float16 *beta, float16 *C, int ldc,
                                 long long int strideC,  // NOLINT
                                 int batchCount) {
Y
Yu Yang 已提交
215
#if CUDA_VERSION >= 8000
216
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasHgemmStridedBatched(
Y
yuyang18 已提交
217 218 219 220 221 222
        handle, transa, transb, m, n, k,
        reinterpret_cast<const __half *>(alpha),
        reinterpret_cast<const __half *>(A), lda, strideA,
        reinterpret_cast<const __half *>(B), ldb, strideB,
        reinterpret_cast<const __half *>(beta), reinterpret_cast<__half *>(C),
        ldc, strideC, batchCount));
Y
Yu Yang 已提交
223
#else
224 225
    PADDLE_THROW(platform::errors::Unimplemented(
        "HgemmStridedBatched is not supported on cuda <= 7.5"));
226 227 228 229 230 231 232 233 234 235 236 237 238 239
#endif
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
  static void GEMM_EX(platform::CUDADeviceContext *dev_ctx,
                      cublasOperation_t transa, cublasOperation_t transb, int m,
                      int n, int k, const void *alpha, const void *A,
                      cudaDataType_t Atype, int lda, const void *B,
                      cudaDataType_t Btype, int ldb, const void *beta, void *C,
                      cudaDataType_t Ctype, int ldc,
                      cudaDataType_t computeType) {
#if CUDA_VERSION >= 8000
240
    cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
241
#if CUDA_VERSION >= 9000
242 243 244 245 246 247
    bool use_tensor_op_math = dev_ctx->tensor_core_available();
    if (use_tensor_op_math) {
      algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
    }
    VLOG(5) << "use_tensor_op_math: "
            << (use_tensor_op_math ? "True" : "False");
248 249
#endif  // CUDA_VERSION >= 9000

250
    dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
251
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasGemmEx(
252 253 254
          handle, transa, transb, m, n, k, alpha, A, Atype, lda, B, Btype, ldb,
          beta, C, Ctype, ldc, computeType, algo));
    });
255
#else
256 257
    PADDLE_THROW(platform::errors::Unimplemented(
        "cublasGemmEx is not supported on cuda <= 7.5"));
Y
Yu Yang 已提交
258 259
#endif
  }
Y
Yu Yang 已提交
260 261
};

262
template <>
263
struct CUBlas<platform::complex<float>> {
264
  static void GEMV(cublasHandle_t handle, cublasOperation_t transa, int m,
265 266 267 268 269
                   int n, const platform::complex<float> *alpha,
                   const platform::complex<float> *A, int lda,
                   const platform::complex<float> *B, int ldb,
                   const platform::complex<float> *beta,
                   platform::complex<float> *C, int ldc) {
270 271 272 273 274 275 276 277
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasCgemv(
        handle, transa, m, n, reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex *>(A), lda,
        reinterpret_cast<const cuFloatComplex *>(B), ldb,
        reinterpret_cast<const cuFloatComplex *>(beta),
        reinterpret_cast<cuFloatComplex *>(C), ldc));
  }

278 279 280 281
  static void AXPY(cublasHandle_t handle, int n,
                   const platform::complex<float> *alpha,
                   const platform::complex<float> *X, const int incX,
                   platform::complex<float> *Y, const int incY) {
282 283 284 285 286 287
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasCaxpy(
        handle, n, reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex *>(X), incX,
        reinterpret_cast<cuFloatComplex *>(Y), incY));
  }

288 289 290
  static void GEMM_STRIDED_BATCH(cublasHandle_t handle,
                                 cublasOperation_t transa,
                                 cublasOperation_t transb, int m, int n, int k,
291 292 293 294 295 296 297
                                 const platform::complex<float> *alpha,
                                 const platform::complex<float> *A, int lda,
                                 long long int strideA,              // NOLINT
                                 const platform::complex<float> *B,  // NOLINT
                                 int ldb, long long int strideB,     // NOLINT
                                 const platform::complex<float> *beta,
                                 platform::complex<float> *C, int ldc,
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
                                 long long int strideC,  // NOLINT
                                 int batchCount) {
#if CUDA_VERSION >= 8000
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasCgemmStridedBatched(
        handle, transa, transb, m, n, k,
        reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex *>(A), lda, strideA,
        reinterpret_cast<const cuFloatComplex *>(B), ldb, strideB,
        reinterpret_cast<const cuFloatComplex *>(beta),
        reinterpret_cast<cuFloatComplex *>(C), ldc, strideC, batchCount));
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "CgemmStridedBatched is not supported on cuda <= 7.5"));
#endif
  }

  static void GEMM(cublasHandle_t handle, cublasOperation_t transa,
                   cublasOperation_t transb, int m, int n, int k,
316 317 318 319 320
                   const platform::complex<float> *alpha,
                   const platform::complex<float> *A, int lda,
                   const platform::complex<float> *B, int ldb,
                   const platform::complex<float> *beta,
                   platform::complex<float> *C, int ldc) {
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasCgemm(
        handle, transa, transb, m, n, k,
        reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex *>(A), lda,
        reinterpret_cast<const cuFloatComplex *>(B), ldb,
        reinterpret_cast<const cuFloatComplex *>(beta),
        reinterpret_cast<cuFloatComplex *>(C), ldc));
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
  static void GEMM_EX(platform::CUDADeviceContext *dev_ctx,
                      cublasOperation_t transa, cublasOperation_t transb, int m,
                      int n, int k, const void *alpha, const void *A,
                      cudaDataType_t Atype, int lda, const void *B,
                      cudaDataType_t Btype, int ldb, const void *beta, void *C,
                      cudaDataType_t Ctype, int ldc,
                      cudaDataType_t computeType) {
#if CUDA_VERSION >= 8000
    cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
    bool use_tensor_op_math = dev_ctx->tensor_core_available();
    if (use_tensor_op_math) {
      algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
    }
    VLOG(5) << "use_tensor_op_math: "
            << (use_tensor_op_math ? "True" : "False");
#endif  // CUDA_VERSION >= 9000

    dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasGemmEx(
          handle, transa, transb, m, n, k, alpha, A, Atype, lda, B, Btype, ldb,
          beta, C, Ctype, ldc, computeType, algo));
    });
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "cublasGemmEx is not supported on cuda <= 7.5"));
#endif
  }
};

template <>
364
struct CUBlas<platform::complex<double>> {
365
  static void GEMV(cublasHandle_t handle, cublasOperation_t transa, int m,
366 367 368 369 370
                   int n, const platform::complex<double> *alpha,
                   const platform::complex<double> *A, int lda,
                   const platform::complex<double> *B, int ldb,
                   const platform::complex<double> *beta,
                   platform::complex<double> *C, int ldc) {
371 372 373 374 375 376 377 378
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasZgemv(
        handle, transa, m, n, reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex *>(A), lda,
        reinterpret_cast<const cuDoubleComplex *>(B), ldb,
        reinterpret_cast<const cuDoubleComplex *>(beta),
        reinterpret_cast<cuDoubleComplex *>(C), ldc));
  }

379 380 381 382
  static void AXPY(cublasHandle_t handle, int n,
                   const platform::complex<double> *alpha,
                   const platform::complex<double> *X, const int incX,
                   platform::complex<double> *Y, const int incY) {
383 384 385 386 387 388
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasZaxpy(
        handle, n, reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex *>(X), incX,
        reinterpret_cast<cuDoubleComplex *>(Y), incY));
  }

389 390 391
  static void GEMM_STRIDED_BATCH(cublasHandle_t handle,
                                 cublasOperation_t transa,
                                 cublasOperation_t transb, int m, int n, int k,
392 393 394 395 396 397 398
                                 const platform::complex<double> *alpha,
                                 const platform::complex<double> *A, int lda,
                                 long long int strideA,               // NOLINT
                                 const platform::complex<double> *B,  // NOLINT
                                 int ldb, long long int strideB,      // NOLINT
                                 const platform::complex<double> *beta,
                                 platform::complex<double> *C, int ldc,
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                                 long long int strideC,  // NOLINT
                                 int batchCount) {
#if CUDA_VERSION >= 8000
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasZgemmStridedBatched(
        handle, transa, transb, m, n, k,
        reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex *>(A), lda, strideA,
        reinterpret_cast<const cuDoubleComplex *>(B), ldb, strideB,
        reinterpret_cast<const cuDoubleComplex *>(beta),
        reinterpret_cast<cuDoubleComplex *>(C), ldc, strideC, batchCount));
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "CgemmStridedBatched is not supported on cuda <= 7.5"));
#endif
  }

  static void GEMM(cublasHandle_t handle, cublasOperation_t transa,
                   cublasOperation_t transb, int m, int n, int k,
417 418 419 420 421
                   const platform::complex<double> *alpha,
                   const platform::complex<double> *A, int lda,
                   const platform::complex<double> *B, int ldb,
                   const platform::complex<double> *beta,
                   platform::complex<double> *C, int ldc) {
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasZgemm(
        handle, transa, transb, m, n, k,
        reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex *>(A), lda,
        reinterpret_cast<const cuDoubleComplex *>(B), ldb,
        reinterpret_cast<const cuDoubleComplex *>(beta),
        reinterpret_cast<cuDoubleComplex *>(C), ldc));
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
  static void GEMM_EX(platform::CUDADeviceContext *dev_ctx,
                      cublasOperation_t transa, cublasOperation_t transb, int m,
                      int n, int k, const void *alpha, const void *A,
                      cudaDataType_t Atype, int lda, const void *B,
                      cudaDataType_t Btype, int ldb, const void *beta, void *C,
                      cudaDataType_t Ctype, int ldc,
                      cudaDataType_t computeType) {
#if CUDA_VERSION >= 8000
    cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
    bool use_tensor_op_math = dev_ctx->tensor_core_available();
    if (use_tensor_op_math) {
      algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
    }
    VLOG(5) << "use_tensor_op_math: "
            << (use_tensor_op_math ? "True" : "False");
#endif  // CUDA_VERSION >= 9000

    dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasGemmEx(
          handle, transa, transb, m, n, k, alpha, A, Atype, lda, B, Btype, ldb,
          beta, C, Ctype, ldc, computeType, algo));
    });
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "cublasGemmEx is not supported on cuda <= 7.5"));
#endif
  }
};

Y
Yu Yang 已提交
464 465
template <>
template <typename T>
Y
Yu Yang 已提交
466 467 468 469
void Blas<platform::CUDADeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                             CBLAS_TRANSPOSE transB, int M,
                                             int N, int K, T alpha, const T *A,
                                             const T *B, T beta, T *C) const {
Y
Yu Yang 已提交
470 471 472 473 474 475 476 477 478
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

479 480 481 482 483 484 485 486
#if CUDA_VERSION >= 8000
  if (FLAGS_enable_cublas_tensor_op_math && std::is_same<T, float>::value) {
    auto &cuda_ctx = const_cast<platform::CUDADeviceContext &>(context_);
    CUBlas<T>::GEMM_EX(&cuda_ctx, cuTransB, cuTransA, N, M, K, &alpha, B,
                       CUDA_R_32F, ldb, A, CUDA_R_32F, lda, &beta, C,
                       CUDA_R_32F, N);
  } else {
#endif  // CUDA_VERSION >= 8000
487 488 489 490
    context_.CublasCall([&](cublasHandle_t handle) {
      CUBlas<T>::GEMM(handle, cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A,
                      lda, &beta, C, N);
    });
491 492 493 494

#if CUDA_VERSION >= 8000
  }
#endif  // CUDA_VERSION >= 8000
Y
Yu Yang 已提交
495 496 497 498 499
}

template <>
template <>
inline void Blas<platform::CUDADeviceContext>::GEMM(
Y
Yu Yang 已提交
500 501 502 503
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    platform::float16 alpha, const platform::float16 *A,
    const platform::float16 *B, platform::float16 beta,
    platform::float16 *C) const {
Y
Yu Yang 已提交
504 505 506 507 508 509 510 511 512 513
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
514 515 516 517 518 519
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(), 53,
      platform::errors::InvalidArgument(
          "cublas fp16 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));
Y
Yu Yang 已提交
520 521 522 523

  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);

524
#if CUDA_VERSION >= 8000
Y
Yu Yang 已提交
525 526 527 528
  // cublasHgemm does true FP16 computation which is slow for non-Volta
  // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
  // input/output in fp16, computation in fp32, which can also be accelerated
  // using tensor cores in volta GPUs.
529 530 531 532
  auto &cuda_ctx = const_cast<platform::CUDADeviceContext &>(context_);
  CUBlas<platform::float16>::GEMM_EX(
      &cuda_ctx, cuTransB, cuTransA, N, M, K, &h_alpha, B, CUDA_R_16F, ldb, A,
      CUDA_R_16F, lda, &h_beta, C, CUDA_R_16F, N, CUDA_R_32F);
Y
Yu Yang 已提交
533 534
#else
  // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm
535 536 537 538 539 540

  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<platform::float16>::GEMM(handle, cuTransB, cuTransA, N, M, K,
                                    &h_alpha, h_B, ldb, h_A, lda, &h_beta, h_C,
                                    N);
  });
Y
Yu Yang 已提交
541 542 543
#endif  // CUDA_VERSION >= 8000
}

544 545 546 547
template <>
template <>
inline void Blas<platform::CUDADeviceContext>::GEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
548 549 550
    platform::complex<float> alpha, const platform::complex<float> *A,
    const platform::complex<float> *B, platform::complex<float> beta,
    platform::complex<float> *C) const {
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(), 53,
      platform::errors::InvalidArgument(
          "cublas complex64 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  thrust::complex<float> c_alpha =
      thrust::complex<float>(alpha.real, alpha.imag);
  thrust::complex<float> c_beta = thrust::complex<float>(beta.real, beta.imag);

#if CUDA_VERSION >= 8000
  // cublasHgemm does true FP16 computation which is slow for non-Volta
  // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
  // input/output in fp16, computation in fp32, which can also be accelerated
  // using tensor cores in volta GPUs.
  auto &cuda_ctx = const_cast<platform::CUDADeviceContext &>(context_);
578
  CUBlas<platform::complex<float>>::GEMM_EX(
579 580 581 582 583 584
      &cuda_ctx, cuTransB, cuTransA, N, M, K, &c_alpha, B, CUDA_C_32F, ldb, A,
      CUDA_C_32F, lda, &c_beta, C, CUDA_C_32F, N, CUDA_C_32F);
#else
  // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm

  context_.CublasCall([&](cublasHandle_t handle) {
585 586 587
    CUBlas<platform::complex<float>>::GEMM(handle, cuTransB, cuTransA, N, M, K,
                                           &c_alpha, h_B, ldb, h_A, lda,
                                           &c_beta, h_C, N);
588 589 590 591 592 593 594 595
  });
#endif  // CUDA_VERSION >= 8000
}

template <>
template <>
inline void Blas<platform::CUDADeviceContext>::GEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
596 597 598
    platform::complex<double> alpha, const platform::complex<double> *A,
    const platform::complex<double> *B, platform::complex<double> beta,
    platform::complex<double> *C) const {
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(), 53,
      platform::errors::InvalidArgument(
          "cublas complex128 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  thrust::complex<double> c_alpha =
      thrust::complex<double>(alpha.real, alpha.imag);
  thrust::complex<double> c_beta =
      thrust::complex<double>(beta.real, beta.imag);

#if CUDA_VERSION >= 8000
  // cublasHgemm does true FP16 computation which is slow for non-Volta
  // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
  // input/output in fp16, computation in fp32, which can also be accelerated
  // using tensor cores in volta GPUs.
  auto &cuda_ctx = const_cast<platform::CUDADeviceContext &>(context_);
627
  CUBlas<platform::complex<double>>::GEMM_EX(
628 629 630 631 632 633
      &cuda_ctx, cuTransB, cuTransA, N, M, K, &c_alpha, B, CUDA_C_64F, ldb, A,
      CUDA_C_64F, lda, &c_beta, C, CUDA_C_64F, N, CUDA_C_64F);
#else
  // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm

  context_.CublasCall([&](cublasHandle_t handle) {
634 635 636
    CUBlas<platform::complex<double>>::GEMM(handle, cuTransB, cuTransA, N, M, K,
                                            &c_alpha, h_B, ldb, h_A, lda,
                                            &c_beta, h_C, N);
637 638 639 640
  });
#endif  // CUDA_VERSION >= 8000
}

Y
Yu Yang 已提交
641 642
template <>
template <typename T>
Y
Yu Yang 已提交
643 644 645 646
void Blas<platform::CUDADeviceContext>::GEMM(bool transA, bool transB, int M,
                                             int N, int K, T alpha, const T *A,
                                             int lda, const T *B, int ldb,
                                             T beta, T *C, int ldc) const {
Y
Yu Yang 已提交
647 648
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Y
Yu Yang 已提交
649 650
  cublasOperation_t cuTransA = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
  cublasOperation_t cuTransB = transB ? CUBLAS_OP_T : CUBLAS_OP_N;
651 652 653 654 655 656 657 658 659 660

#if CUDA_VERSION >= 8000
  if (FLAGS_enable_cublas_tensor_op_math && std::is_same<T, float>::value) {
    auto &cuda_ctx = const_cast<platform::CUDADeviceContext &>(context_);
    CUBlas<T>::GEMM_EX(&cuda_ctx, cuTransB, cuTransA, N, M, K, &alpha, B,
                       CUDA_R_32F, ldb, A, CUDA_R_32F, lda, &beta, C,
                       CUDA_R_32F, ldc);
  } else {
#endif  // CUDA_VERSION >= 8000

661 662 663 664
    context_.CublasCall([&](cublasHandle_t handle) {
      CUBlas<T>::GEMM(handle, cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A,
                      lda, &beta, C, ldc);
    });
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

#if CUDA_VERSION >= 8000
  }
#endif  // CUDA_VERSION >= 8000
}

template <>
template <>
inline void Blas<platform::CUDADeviceContext>::GEMM(
    bool transA, bool transB, int M, int N, int K, platform::float16 alpha,
    const platform::float16 *A, int lda, const platform::float16 *B, int ldb,
    platform::float16 beta, platform::float16 *C, int ldc) const {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
  cublasOperation_t cuTransB = transB ? CUBLAS_OP_T : CUBLAS_OP_N;

682 683 684 685
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<platform::float16>::GEMM(handle, cuTransB, cuTransA, N, M, K, &alpha,
                                    B, ldb, A, lda, &beta, C, ldc);
  });
Y
Yu Yang 已提交
686 687
}

Y
Yu Yang 已提交
688 689 690 691
template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::AXPY(int n, T alpha, const T *x,
                                             T *y) const {
692 693 694
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::AXPY(handle, n, &alpha, x, 1, y, 1);
  });
Y
Yu Yang 已提交
695 696
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710
template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::SCAL(int n, const T alpha, T *x) const {
  context_.CublasCall(
      [&](cublasHandle_t handle) { CUBlas<T>::SCAL(handle, n, &alpha, x, 1); });
}

template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::VCOPY(int n, const T *x, T *y) const {
  context_.CublasCall(
      [&](cublasHandle_t handle) { CUBlas<T>::VCOPY(handle, n, x, 1, y, 1); });
}

Y
Yu Yang 已提交
711 712 713 714 715 716 717
template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::GEMV(bool trans_a, int M, int N,
                                             T alpha, const T *A, const T *B,
                                             T beta, T *C) const {
  cublasOperation_t cuTransA = !trans_a ? CUBLAS_OP_T : CUBLAS_OP_N;

718 719 720
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::GEMV(handle, cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1);
  });
Y
Yu Yang 已提交
721 722
}

S
ShenLiang 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
template <>
template <>
inline void Blas<platform::CUDADeviceContext>::GEMV(
    bool trans_a, int M, int N, platform::float16 alpha,
    const platform::float16 *A, const platform::float16 *B,
    platform::float16 beta, platform::float16 *C) const {
  // Because cublas doesn't support half gemv, we use cublasHgemm to achieve it.
  if (trans_a) {
    this->template GEMM<platform::float16>(CblasNoTrans, CblasNoTrans, 1, N, M,
                                           alpha, B, A, beta, C);
  } else {
    this->template GEMM<platform::float16>(CblasNoTrans, CblasNoTrans, M, 1, N,
                                           alpha, A, B, beta, C);
  }
}

Y
Yu Yang 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB) const {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  const int64_t strideC = M * N;

756
#if CUDA_VERSION >= 9010
757 758
  if ((FLAGS_enable_cublas_tensor_op_math && (std::is_same<T, float>::value)) ||
      std::is_same<T, paddle::platform::float16>::value) {
759 760 761 762 763 764 765 766
    cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
    bool use_tensor_op_math = context_.tensor_core_available();
    if (use_tensor_op_math) {
      algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
    }
    VLOG(5) << "use_tensor_op_math: "
            << (use_tensor_op_math ? "True" : "False");

767
    auto fp = std::is_same<T, float>::value ? CUDA_R_32F : CUDA_R_16F;
768
    context_.TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
769
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cublasGemmStridedBatchedEx(
770 771
          handle, cuTransB, cuTransA, N, M, K, &alpha, B, fp, ldb, strideB, A,
          fp, lda, strideA, &beta, C, fp, ldc, strideC, batchCount, fp, algo));
772
    });
773 774 775
  } else {
#endif  // CUDA_VERSION >= 9010

776 777 778 779 780
    context_.CublasCall([&](cublasHandle_t handle) {
      CUBlas<T>::GEMM_STRIDED_BATCH(handle, cuTransB, cuTransA, N, M, K, &alpha,
                                    B, ldb, strideB, A, lda, strideA, &beta, C,
                                    ldc, strideC, batchCount);
    });
781 782 783 784

#if CUDA_VERSION >= 9010
  }
#endif  // CUDA_VERSION >= 9010
Y
Yu Yang 已提交
785 786
}

S
ShenLiang 已提交
787 788 789 790 791 792 793 794 795 796 797
template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T **A, const T **B, T beta, T **C, int batchCount) const {
  for (int k = 0; k < batchCount; ++k) {
    this->template GEMM<T>(transA, transB, M, N, K, alpha, A[k], B[k], beta,
                           C[k]);
  }
}

S
ShenLiang 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810
template <>
template <>
inline void Blas<platform::CUDADeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    platform::float16 alpha, const platform::float16 **A,
    const platform::float16 **B, platform::float16 beta, platform::float16 **C,
    int batchCount) const {
  for (int k = 0; k < batchCount; ++k) {
    this->template GEMM<platform::float16>(transA, transB, M, N, K, alpha, A[k],
                                           B[k], beta, C[k]);
  }
}

G
Guo Sheng 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::TRSM(CBLAS_SIDE side, CBLAS_UPLO uplo,
                                             CBLAS_TRANSPOSE transA,
                                             CBLAS_DIAG diag, int M, int N,
                                             T alpha, const T *A, int lda, T *B,
                                             int ldb) const {
  // solve row major `op ( A ) X = α B` by taking it as `X' op ( A' )  =  α B'`
  // where ' stands for transpose
  cublasSideMode_t cuSide =
      (side == CblasLeft) ? CUBLAS_SIDE_RIGHT : CUBLAS_SIDE_LEFT;
  cublasFillMode_t cuUplo =
      (uplo == CblasLower) ? CUBLAS_FILL_MODE_UPPER : CUBLAS_FILL_MODE_LOWER;
  // use CUBLAS_OP_C (conjugate transpose) for complex
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasDiagType_t cuDiag =
      (diag == CblasUnit) ? CUBLAS_DIAG_UNIT : CUBLAS_DIAG_NON_UNIT;

  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::TRSM(handle, cuSide, cuUplo, cuTransA, cuDiag, N, M, &alpha, A,
                    lda, B, ldb);
  });
}

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::BatchedGETRF(int n, T **a, int *ipiv,
                                                     int *info,
                                                     int batch_size) const {
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::GETRF_BATCH(handle, n, a, n, ipiv, info, batch_size);
  });
}

template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::BatchedGETRI(int n, const T **a,
                                                     const int *ipiv, T **a_inv,
                                                     int *info,
                                                     int batch_size) const {
  PADDLE_ENFORCE_NE(
      a_inv, a,
      platform::errors::InvalidArgument(
          "cuBLAS fuction 'cublas<S/D>getrfBatched' cannot be executed "
          "in-place. The memory space of output matrix (address: %p) cannot "
          "overlap memory space of input matrix (address: %p).",
          a_inv, a));
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::GETRI_BATCH(handle, n, a, n, ipiv, a_inv, n, info, batch_size);
  });
}

template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::BatchedMatInv(int n, const T **a,
                                                      T **a_inv, int *info,
                                                      int batch_size) const {
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::MATINV_BATCH(handle, n, a, n, a_inv, n, info, batch_size);
  });
}

Y
Yu Yang 已提交
874 875 876
}  // namespace math
}  // namespace operators
}  // namespace paddle