uniform_random_op_xpu.cc 4.1 KB
Newer Older
P
pangyoki 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include "paddle/fluid/operators/uniform_random_op.h"
#include <string>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"

namespace paddle {
namespace operators {

template <typename T>
class XPUUniformRandomKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    framework::Tensor *tensor = nullptr;
    auto out_var = ctx.OutputVar("Out");
32 33 34 35 36 37 38 39 40 41 42 43 44
    std::vector<int64_t> new_shape;
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensorList");
    if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) {
      if (ctx.HasInput("ShapeTensor")) {
        auto *shape_tensor = ctx.Input<framework::Tensor>("ShapeTensor");
        new_shape = GetNewDataFromShapeTensor(shape_tensor);
      } else if (list_new_shape_tensor.size() > 0) {
        new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
      }
    }

    if (out_var->IsType<framework::SelectedRows>()) {
P
pangyoki 已提交
45 46
      auto *selected_rows = out_var->GetMutable<framework::SelectedRows>();
      tensor = selected_rows->mutable_value();
47 48
      auto shape = ctx.Attr<std::vector<int64_t>>("shape");
      if (!new_shape.empty()) shape = new_shape;
P
pangyoki 已提交
49 50
      tensor->Resize(framework::make_ddim(shape));
      selected_rows->mutable_rows()->reserve(shape[0]);
51 52 53
    } else if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
      if (!new_shape.empty()) tensor->Resize(framework::make_ddim(new_shape));
P
pangyoki 已提交
54 55
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
56 57 58
          "Expected type of Output(out) in uniform_random_op must be Tensor, "
          "SelectedRows. But got "
          "unsupport type: %s.",
P
pangyoki 已提交
59 60 61 62 63
          framework::ToTypeName(out_var->Type())));
    }
    T *data = tensor->mutable_data<T>(ctx.GetPlace());

    int64_t size = tensor->numel();
64
    std::unique_ptr<T[]> data_cpu(new T[size]);
P
pangyoki 已提交
65 66 67 68 69 70 71 72 73 74
    std::uniform_real_distribution<T> dist(
        static_cast<T>(ctx.Attr<float>("min")),
        static_cast<T>(ctx.Attr<float>("max")));
    unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
    auto engine = framework::GetCPURandomEngine(seed);

    for (int64_t i = 0; i < size; ++i) {
      data_cpu[i] = dist(*engine);
    }

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    unsigned int diag_num =
        static_cast<unsigned int>(ctx.Attr<int>("diag_num"));
    unsigned int diag_step =
        static_cast<unsigned int>(ctx.Attr<int>("diag_step"));
    auto diag_val = static_cast<T>(ctx.Attr<float>("diag_val"));
    if (diag_num > 0) {
      PADDLE_ENFORCE_GT(
          size, (diag_num - 1) * (diag_step + 1),
          platform::errors::InvalidArgument(
              "ShapeInvalid: the diagonal's elements is equal (num-1) "
              "* (step-1) with num %d, step %d,"
              "It should be smaller than %d, but received %d",
              diag_num, diag_step, (diag_num - 1) * (diag_step + 1), size));
      for (int64_t i = 0; i < diag_num; ++i) {
        int64_t pos = i * diag_step + i;
        data_cpu[pos] = diag_val;
      }
    }

P
pangyoki 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()), data,
                 platform::CPUPlace(), reinterpret_cast<void *>(data_cpu.get()),
                 size * sizeof(T));
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OP_XPU_KERNEL(uniform_random,
                       paddle::operators::XPUUniformRandomKernel<float>);

#endif  // PADDLE_WITH_XPU