async_executor.py 14.3 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import contextlib
import six
from .framework import Program, default_main_program, Variable
from . import core
from .executor import global_scope, Executor
from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import io
from .data_feed_desc import DataFeedDesc
27
from .trainer_desc import TrainerDesc, MultiTrainer, DistMultiTrainer
H
heqiaozhi 已提交
28
from .distributed import ps_instance
H
heqiaozhi 已提交
29
from .contrib.utils import hdfs_utils as hdfs
W
Wang Guibao 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

__all__ = ['AsyncExecutor']


class AsyncExecutor(object):
    """
    An asynchronous Executor in Python. Through exploiting the power of
    multi-core processor and data queueing, AsyncExecutor makes data reading
    and cosuming decoupled, each run in multiple threads in parallel.

    Instead of reading data in python side, AsyncExecutor accepts a training
    file list, which will be retrieved in C++, then training inputs will be
    read, parsed and fed to training network within C++ code.

    AsyncExecutor is in active development and the API might change in the near
    future.

    Example:
        >>> data_feed = fluid.DataFeedDesc('data.proto')
        >>> startup_program = fluid.default_startup_program()
        >>> main_program = fluid.default_main_program()
        >>> filelist = ["train_data/part-%d" % i for i in range(100)]
        >>> thread_num = len(filelist) / 4
        >>>
        >>> place = fluid.CPUPlace()
        >>> async_executor = fluid.AsyncExecutor(place)
        >>>
        >>> async_executor.run_startup_program(startup_program)
        >>>
        >>> epoch = 10
        >>> for i in range(epoch):
        >>>     async_executor.run(main_program,
        >>>                        data_feed,
        >>>                        filelist,
        >>>                        thread_num,
        >>>                        [acc],
        >>>                        debug=False)

    Args:
        place(fluid.CPUPlace|None): indicate the executor run on which device.
                                   Only CPUPlace supported

    Note:
        For debugging complicated network in parallel-GPUs, you can test it
        on the executor. They has the exactly same arguments, and expected
        the same results.

    Note: Only running on CPUPlace supported.
    """

D
dongdaxiang 已提交
80
    def __init__(self, place=None, run_mode=""):
X
xjqbest 已提交
81 82 83 84 85 86
        """
        Init.
        Args:
            place(Place): CPUPlace or GPUPlace.
            run_mode(str): default is empty string.
        """
W
Wang Guibao 已提交
87 88 89 90 91 92 93 94 95 96
        if place is None:
            place = core.CPUPlace()
        if not isinstance(place, core.CPUPlace):
            raise ValueError("AsyncExecutor only supports CPU device")

        p = core.Place()
        p.set_place(place)

        scope = global_scope()
        self.executor = core.AsyncExecutor(scope, p)
H
heqiaozhi 已提交
97
        self.instance = None
W
Wang Guibao 已提交
98

99
    def run(self, program, data_feed, filelist, thread_num, fetch, debug=False):
X
xjqbest 已提交
100 101 102 103 104 105 106 107 108 109 110 111
        """
        Run program by this AsyncExecutor.
        Args:
            program(Program): the program that need to run, if not provied,
                              then default_main_program will be used.
            data_feed(DataFeedDesc): A DataFeedDesc object
            filelist(str|list): a file or a list of files
            thread_num(int): number of concurrent training threads.
            fetch(str|list): the var name or a list of var names to inspect
            debug(bool): When set to True, fetch vars will be printed to
                         standard output after each minibatch
        """
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        if program is None:
            program = default_main_program()
        program_desc = program.desc

        if data_feed is None:
            raise ValueError('ValueError: data_feed should be provided')

        if filelist is None:
            raise ValueError('ValueError: filelist should be provided')

        if isinstance(filelist, str):
            filelist = [filelist]

        if not isinstance(thread_num, int):
            raise TypeError('TypeError: thread_num should be a positive number')

        is_local = self.instance == None
        trainer = None
        if is_local:
131
            trainer = MultiTrainer()
132
        else:
133 134 135
            trainer = DistMultiTrainer()
        trainer.gen_trainer_desc(
            dataset=data_feed, fleet_desc=self.dist_desc, worker="downpour")
136 137 138
        trainer.set_thread(thread_num)
        trainer.set_filelist(filelist)
        trainer.set_data_feed(data_feed)
H
heqiaozhi 已提交
139 140
        if not is_local:
            trainer.set_program_config(self.dist_desc, str(id(program)))
141 142 143
        with open("trainer_desc.proto", "w") as fout:
            fout.write(trainer._desc())
        # define a trainer and a device_worker here
H
heqiaozhi 已提交
144
        self.executor.run_from_files(program_desc,
H
heqiaozhi 已提交
145
                                     trainer._desc(), debug)
146 147

    '''
D
dongdaxiang 已提交
148 149 150 151 152 153 154 155
    def run(self,
            program,
            data_feed,
            filelist,
            thread_num,
            fetch,
            mode="",
            debug=False):
W
Wang Guibao 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        """
        Run program by this AsyncExecutor. Training dataset will be in filelist.
        Users can also inspect certain variables by naming them in parameter
        :code:`fetch`, like in fluid.Executor. Unlike fluid.Executor, however,
        AsyncExecutor doesn't return fetched variables, instead, it will dump
        the values of each fetched variable to stdandard output.

        Running the dataset will be on multiple threads, within each a thread
        local scope will be created, then all OPs also created in that scope.
        Parameters are updated by all the OPs simultaneously.

        Args:
            program(Program): the program that need to run, if not provied,
                              then default_main_program will be used.
            data_feed(DataFeedDesc): A DataFeedDesc object
            filelist(str): a file containing the training dataset file list
            thread_num(int): number of concurrent training threads. See
                             :code:`Note` for how to set this properly
            fetch(str|list): the var name or a list of var names to inspect
D
dongdaxiang 已提交
175
            mode(str): run mode of this interface
W
Wang Guibao 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
            debug(bool): When set to True, fetch vars will be printed to
                         standard output after each minibatch

        Note:
            the executor will run all operators in the program but not only
            the operators dependent by the fetch_list.

        Note:
            Running AsyncExecutor will be on multiple threads, each bound to a
            CPU core. To achieve best performance, it's suggested to set thread
            num to be equal or slightly less than that of CPU cores.
        """
        if program is None:
            program = default_main_program()
        program_desc = program.desc

        if data_feed is None:
            raise ValueError('ValueError: data_feed should be provided')

        if filelist is None:
            raise ValueError('ValueError: filelist should be provided')

        if isinstance(filelist, str):
            filelist = [filelist]

        if not isinstance(thread_num, int):
            raise TypeError('TypeError: thread_num should be a positive number')

        if fetch is not None:
            if isinstance(fetch, Variable):
                fetch = [fetch]
            fetch_var_names = [var.name for var in fetch]
            for fetch_var in fetch:
                shape = fetch_var.shape
                if shape[len(shape) - 1] != 1:
                    raise AssertionError(
                        "%s: Fetch variable has wrong shape. Only varibles "
                        "with the last dimension size 1 supported." %
                        (fetch_var.name))

        self.executor.run_from_files(program_desc,
                                     data_feed.desc(), filelist, thread_num,
H
heqiaozhi 已提交
218
                                     fetch_var_names, mode, debug, str(id(program_desc)))
219
    '''
H
heqiaozhi 已提交
220

D
dongdaxiang 已提交
221 222 223 224 225 226 227 228 229 230 231
    def download_data(self,
                      afs_path,
                      local_path,
                      fs_default_name,
                      ugi,
                      file_cnt,
                      hadoop_home="$HADOOP_HOME",
                      process_num=12):
        """
        download_data is a default download method for distributed training
        a user download data without this method
X
xjqbest 已提交
232

D
dongdaxiang 已提交
233 234 235
        Example:
            >>> exe = fluid.AsyncExecutor()
            >>> exe.download_data("/xxx/xxx/xx/",
X
xjqbest 已提交
236 237
            >>>                   "./data", "afs://
            >>>  xxx.xxx.xxx.xxx:9901", "xxx,yyy")
D
dongdaxiang 已提交
238 239 240 241 242 243 244 245 246
        Args:
            afs_path(str): afs_path defined by users
            local_path(str): download data path
            fs_default_name(str): file system server address
            ugi(str): hadoop ugi
            file_cn(int): a user can specify file number for debugging
            hadoop_home(str): hadoop home path
            process_num(int): download process num
        """
H
heqiaozhi 已提交
247
        if self.instance is None:
D
dongdaxiang 已提交
248 249 250 251
            raise ValueError('instance is None, please run'
                             'config_distributed_nodes init instance')

        configs = {"fs.default.name": fs_default_name, "hadoop.job.ugi": ugi}
H
heqiaozhi 已提交
252 253 254 255

        client = hdfs.HDFSClient(hadoop_home, configs)
        downloads = hdfs.multi_download(
            client,
D
dongdaxiang 已提交
256 257
            afs_path,
            local_path,
H
heqiaozhi 已提交
258 259 260
            self.instance.get_worker_index(),
            self.instance.get_node_cnt() / 2,
            multi_processes=process_num)
D
dongdaxiang 已提交
261
        self.instance.barrier_worker()  #wait for download_data
H
heqiaozhi 已提交
262 263

    def get_instance(self):
D
dongdaxiang 已提交
264 265 266 267
        """
        get current node's instance so that user can do operations
        in distributed setting
        """
H
heqiaozhi 已提交
268
        if self.instance is None:
D
dongdaxiang 已提交
269 270 271 272 273 274 275 276
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
        return self.instance

    def config_distributed_nodes(self):
        """
        if a user needs to run distributed async executor
X
xjqbest 已提交
277
        he or she needs to do a global configuration so that
D
dongdaxiang 已提交
278 279 280
        information of current process can be obtained
        """
        self.instance = ps_instance.PaddlePSInstance(1, 2)
H
heqiaozhi 已提交
281 282
        return self.instance

H
heqiaozhi 已提交
283
    def stop(self):
D
dongdaxiang 已提交
284 285 286 287
        """
        at the end of process, users should call stop to servers
        and barrier all workers
        """
H
heqiaozhi 已提交
288
        if self.instance is None:
D
dongdaxiang 已提交
289 290 291 292
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
        self.instance.barrier_worker()  #worker do all things
H
heqiaozhi 已提交
293 294
        if self.instance.is_first_worker():
            self.executor.stop_server()
D
dongdaxiang 已提交
295
        self.instance.barrier_worker()  #sync
296 297
        self.instance.barrier_all()
        self.instance.finalize()
H
heqiaozhi 已提交
298

H
heqiaozhi 已提交
299
    def init_server(self, dist_desc):
D
dongdaxiang 已提交
300 301 302
        """
        initialize server of current node if current process is a server
        Args:
X
xjqbest 已提交
303
        dist_desc(str): a protobuf string that describes
D
dongdaxiang 已提交
304 305
                        how to init a worker and a server
        """
H
heqiaozhi 已提交
306
        if self.instance is None:
D
dongdaxiang 已提交
307 308 309
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
310 311 312
        self.dist_desc_str = text_format.MessageToString(dist_desc)
        self.dist_desc = dist_desc
        self.executor.init_server(self.dist_desc_str, self.instance._rankid)
H
heqiaozhi 已提交
313 314
        ip = self.executor.start_server()
        self.instance.set_ip(ip)
D
dongdaxiang 已提交
315
        self.instance.barrier_all()  #wait all server start
H
heqiaozhi 已提交
316 317
        ips = self.instance.gather_ips()
        self.executor.gather_servers(ips, self.instance.get_node_cnt())
D
dongdaxiang 已提交
318
        self.instance.barrier_all()  #wait all worker start
H
heqiaozhi 已提交
319

H
heqiaozhi 已提交
320
    def init_worker(self, dist_desc, startup_program):
D
dongdaxiang 已提交
321 322 323 324 325 326 327
        """
        initialize worker of current node if current process is a worker
        Args:
        dist_desc(str): a protobuf string that describes
                        how to init a worker and a server
        startup_program(fluid.Program): startup program of current process
        """
H
heqiaozhi 已提交
328
        if self.instance is None:
D
dongdaxiang 已提交
329 330 331
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
332

333
        self.dist_desc_str = text_format.MessageToString(dist_desc)
334
        self.dist_desc = dist_desc
H
heqiaozhi 已提交
335 336
        place = core.CPUPlace()
        executor = Executor(place)
H
heqiaozhi 已提交
337 338 339 340 341
        if isinstance(startup_program, list):
            for sp in startup_program:
                executor.run(sp)
        else:
            executor.run(startup_program)
H
heqiaozhi 已提交
342

D
dongdaxiang 已提交
343
        self.instance.barrier_all()  #wait all server start
H
heqiaozhi 已提交
344
        ips = self.instance.gather_ips()
345
        self.executor.init_worker(self.dist_desc_str, ips,
D
dongdaxiang 已提交
346 347 348
                                  self.instance.get_node_cnt(),
                                  self.instance._rankid)
        self.instance.barrier_all()  #wait all worker start
H
heqiaozhi 已提交
349 350
        if self.instance.is_first_worker():
            self.executor.init_model()
D
dongdaxiang 已提交
351 352
        self.instance.barrier_worker()  #wait init model

353
    def init_model(self):
D
dongdaxiang 已提交
354 355 356 357
        """
        init_model command that can be invoked from one of the worker
        model parameters are initialized in servers
        """
H
heqiaozhi 已提交
358
        if self.instance is None:
D
dongdaxiang 已提交
359 360 361
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
362 363 364
        self.executor.init_model()

    def save_model(self, save_path):
D
dongdaxiang 已提交
365 366 367 368
        """
        save_model command that can be invoked from one of the worker
        model parameters are saved in servers and upload to save_path of file system
        Args:
H
fix doc  
heqiaozhi 已提交
369
        save_path(str): save path to file system
D
dongdaxiang 已提交
370
        """
H
heqiaozhi 已提交
371
        if self.instance is None:
D
dongdaxiang 已提交
372 373 374
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
375
        self.executor.save_model(save_path)