blas_impl.hip.h 59.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include "paddle/phi/backends/dynload/rocblas.h"
18 19
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/kernels/funcs/math_function.h"
20 21 22

DECLARE_bool(enable_cublas_tensor_op_math);

23
namespace phi {
24 25 26 27 28 29 30 31 32
namespace funcs {

template <typename T>
struct CUBlas;

template <>
struct CUBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
33
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_sgemm(args...));
34 35 36 37
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
38
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_saxpy(args...));
39 40 41 42
  }

  template <typename... ARGS>
  static void SCAL(ARGS... args) {
43
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_sscal(args...));
44 45 46 47
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
48
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_scopy(args...));
49 50 51 52
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
53
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_sgemv(args...));
54 55 56 57 58
  }

  template <typename... ARGS>
  static void GEMM_STRIDED_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
59
        phi::dynload::rocblas_sgemm_strided_batched(args...));
60 61 62 63 64 65
  }

  // HIP not supportted, refer to the doc here:
  // https://github.com/ROCm-Developer-Tools/HIP/blob/roc-3.5.x/docs/markdown/CUBLAS_API_supported_by_HIP.md
  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
66
    PADDLE_THROW(phi::errors::Unimplemented(
67 68 69 70 71
        "cublasSgemmEx is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
72
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_strsm(args...));
73 74 75 76
  }

  template <typename... ARGS>
  static void GETRF_BATCH(ARGS... args) {
77
    PADDLE_THROW(phi::errors::Unimplemented(
78 79 80 81 82
        "cublasSgetrfBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void GETRI_BATCH(ARGS... args) {
83
    PADDLE_THROW(phi::errors::Unimplemented(
84 85 86 87 88
        "cublasSgetriBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void MATINV_BATCH(ARGS... args) {
89
    PADDLE_THROW(phi::errors::Unimplemented(
90 91 92 93 94
        "cublasSmatinvBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void TRSM_BATCH(ARGS... args) {
95
    PADDLE_THROW(phi::errors::Unimplemented(
96 97 98 99 100 101 102 103
        "cublasStrsmBatched is not supported on HIP platform."));
  }
};

template <>
struct CUBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
104
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_dgemm(args...));
105 106 107 108
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
109
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_daxpy(args...));
110 111 112 113
  }

  template <typename... ARGS>
  static void SCAL(ARGS... args) {
114
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_dscal(args...));
115 116 117 118
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
119
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_dcopy(args...));
120 121 122 123
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
124
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_dgemv(args...));
125 126 127 128 129
  }

  template <typename... ARGS>
  static void GEMM_STRIDED_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
130
        phi::dynload::rocblas_dgemm_strided_batched(args...));
131 132 133 134 135
  }

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
    PADDLE_THROW(
136
        phi::errors::Unimplemented("Currently there are not cublasDgemmEx."));
137 138 139 140
  }

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
141
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_dtrsm(args...));
142 143 144 145
  }

  template <typename... ARGS>
  static void GETRF_BATCH(ARGS... args) {
146
    PADDLE_THROW(phi::errors::Unimplemented(
147 148 149 150 151
        "cublasDgetrfBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void GETRI_BATCH(ARGS... args) {
152
    PADDLE_THROW(phi::errors::Unimplemented(
153 154 155 156 157
        "cublasDgetriBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void MATINV_BATCH(ARGS... args) {
158
    PADDLE_THROW(phi::errors::Unimplemented(
159 160 161 162 163
        "cublasDmatinvBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void TRSM_BATCH(ARGS... args) {
164
    PADDLE_THROW(phi::errors::Unimplemented(
165 166 167 168 169
        "cublasDtrsmBatched is not supported on HIP platform."));
  }
};

template <>
170 171
struct CUBlas<phi::dtype::float16> {
  using float16 = phi::dtype::float16;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

  static void GEMM(rocblas_handle handle,
                   rocblas_operation transa,
                   rocblas_operation transb,
                   int m,
                   int n,
                   int k,
                   const float16 *alpha,
                   const float16 *A,
                   int lda,
                   const float16 *B,
                   int ldb,
                   const float16 *beta,
                   float16 *C,
                   int ldc) {
187
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_hgemm(
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_half *>(alpha),
        reinterpret_cast<const rocblas_half *>(A),
        lda,
        reinterpret_cast<const rocblas_half *>(B),
        ldb,
        reinterpret_cast<const rocblas_half *>(beta),
        reinterpret_cast<rocblas_half *>(C),
        ldc));
  }

  static void GEMM_STRIDED_BATCH(rocblas_handle handle,
                                 rocblas_operation transa,
                                 rocblas_operation transb,
                                 int m,
                                 int n,
                                 int k,
                                 const float16 *alpha,
                                 const float16 *A,
                                 int lda,
                                 long long int strideA,  // NOLINT
                                 const float16 *B,       // NOLINT
                                 int ldb,
                                 long long int strideB,  // NOLINT
                                 const float16 *beta,
                                 float16 *C,
                                 int ldc,
                                 long long int strideC,  // NOLINT
                                 int batchCount) {
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_hgemm_strided_batched(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_half *>(alpha),
        reinterpret_cast<const rocblas_half *>(A),
        lda,
        strideA,
        reinterpret_cast<const rocblas_half *>(B),
        ldb,
        strideB,
        reinterpret_cast<const rocblas_half *>(beta),
        reinterpret_cast<rocblas_half *>(C),
        ldc,
        strideC,
        batchCount));
241 242 243 244 245
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
246
  static void GEMM_EX(phi::GPUContext *dev_ctx,
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
                      rocblas_operation transa,
                      rocblas_operation transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      rocblas_datatype Atype,
                      int lda,
                      const void *B,
                      rocblas_datatype Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      rocblas_datatype Ctype,
                      int ldc,
                      rocblas_datatype computeType) {
    rocblas_gemm_algo algo = rocblas_gemm_algo_standard;
    dev_ctx->TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_gemm_ex(handle,
                                                               transa,
                                                               transb,
                                                               m,
                                                               n,
                                                               k,
                                                               alpha,
                                                               A,
                                                               Atype,
                                                               lda,
                                                               B,
                                                               Btype,
                                                               ldb,
                                                               beta,
                                                               C,
                                                               Ctype,
                                                               ldc,
                                                               C,
                                                               Ctype,
                                                               ldc,
                                                               computeType,
                                                               algo,
                                                               0,
                                                               0));
290 291 292 293 294
    });
  }
};

template <>
295
struct CUBlas<phi::dtype::complex<float>> {
296 297 298 299
  static void GEMV(rocblas_handle handle,
                   rocblas_operation transa,
                   int m,
                   int n,
300 301
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *A,
302
                   int lda,
303
                   const phi::dtype::complex<float> *B,
304
                   int ldb,
305 306
                   const phi::dtype::complex<float> *beta,
                   phi::dtype::complex<float> *C,
307
                   int ldc) {
308
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_cgemv(
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        handle,
        transa,
        m,
        n,
        reinterpret_cast<const rocblas_float_complex *>(alpha),
        reinterpret_cast<const rocblas_float_complex *>(A),
        lda,
        reinterpret_cast<const rocblas_float_complex *>(B),
        ldb,
        reinterpret_cast<const rocblas_float_complex *>(beta),
        reinterpret_cast<rocblas_float_complex *>(C),
        ldc));
  }

  static void AXPY(rocblas_handle handle,
                   int n,
325 326
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *X,
327
                   const int incX,
328
                   phi::dtype::complex<float> *Y,
329
                   const int incY) {
330
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_caxpy(
331 332 333 334 335 336 337 338 339
        handle,
        n,
        reinterpret_cast<const rocblas_float_complex *>(alpha),
        reinterpret_cast<const rocblas_float_complex *>(X),
        incX,
        reinterpret_cast<rocblas_float_complex *>(Y),
        incY));
  }

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  static void GEMM_STRIDED_BATCH(rocblas_handle handle,
                                 rocblas_operation transa,
                                 rocblas_operation transb,
                                 int m,
                                 int n,
                                 int k,
                                 const phi::dtype::complex<float> *alpha,
                                 const phi::dtype::complex<float> *A,
                                 int lda,
                                 long long int strideA,                // NOLINT
                                 const phi::dtype::complex<float> *B,  // NOLINT
                                 int ldb,
                                 long long int strideB,  // NOLINT
                                 const phi::dtype::complex<float> *beta,
                                 phi::dtype::complex<float> *C,
                                 int ldc,
                                 long long int strideC,  // NOLINT
                                 int batchCount) {
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_cgemm_strided_batched(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_float_complex *>(alpha),
        reinterpret_cast<const rocblas_float_complex *>(A),
        lda,
        strideA,
        reinterpret_cast<const rocblas_float_complex *>(B),
        ldb,
        strideB,
        reinterpret_cast<const rocblas_float_complex *>(beta),
        reinterpret_cast<rocblas_float_complex *>(C),
        ldc,
        strideC,
        batchCount));
377 378 379 380 381 382 383 384
  }

  static void GEMM(rocblas_handle handle,
                   rocblas_operation transa,
                   rocblas_operation transb,
                   int m,
                   int n,
                   int k,
385 386
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *A,
387
                   int lda,
388
                   const phi::dtype::complex<float> *B,
389
                   int ldb,
390 391
                   const phi::dtype::complex<float> *beta,
                   phi::dtype::complex<float> *C,
392
                   int ldc) {
393
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_cgemm(
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_float_complex *>(alpha),
        reinterpret_cast<const rocblas_float_complex *>(A),
        lda,
        reinterpret_cast<const rocblas_float_complex *>(B),
        ldb,
        reinterpret_cast<const rocblas_float_complex *>(beta),
        reinterpret_cast<rocblas_float_complex *>(C),
        ldc));
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
413
  static void GEMM_EX(phi::GPUContext *dev_ctx,
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
                      rocblas_operation transa,
                      rocblas_operation transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      rocblas_datatype Atype,
                      int lda,
                      const void *B,
                      rocblas_datatype Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      rocblas_datatype Ctype,
                      int ldc,
                      rocblas_datatype computeType) {
    rocblas_gemm_algo algo = rocblas_gemm_algo_standard;
    dev_ctx->TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_gemm_ex(handle,
                                                               transa,
                                                               transb,
                                                               m,
                                                               n,
                                                               k,
                                                               alpha,
                                                               A,
                                                               Atype,
                                                               lda,
                                                               B,
                                                               Btype,
                                                               ldb,
                                                               beta,
                                                               C,
                                                               Ctype,
                                                               ldc,
                                                               C,
                                                               Ctype,
                                                               ldc,
                                                               computeType,
                                                               algo,
                                                               0,
                                                               0));
457 458 459 460 461
    });
  }
};

template <>
462
struct CUBlas<phi::dtype::complex<double>> {
463 464 465 466
  static void GEMV(rocblas_handle handle,
                   rocblas_operation transa,
                   int m,
                   int n,
467 468
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *A,
469
                   int lda,
470
                   const phi::dtype::complex<double> *B,
471
                   int ldb,
472 473
                   const phi::dtype::complex<double> *beta,
                   phi::dtype::complex<double> *C,
474
                   int ldc) {
475
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_zgemv(
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        handle,
        transa,
        m,
        n,
        reinterpret_cast<const rocblas_double_complex *>(alpha),
        reinterpret_cast<const rocblas_double_complex *>(A),
        lda,
        reinterpret_cast<const rocblas_double_complex *>(B),
        ldb,
        reinterpret_cast<const rocblas_double_complex *>(beta),
        reinterpret_cast<rocblas_double_complex *>(C),
        ldc));
  }

  static void AXPY(rocblas_handle handle,
                   int n,
492 493
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *X,
494
                   const int incX,
495
                   phi::dtype::complex<double> *Y,
496
                   const int incY) {
497
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_zaxpy(
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        handle,
        n,
        reinterpret_cast<const rocblas_double_complex *>(alpha),
        reinterpret_cast<const rocblas_double_complex *>(X),
        incX,
        reinterpret_cast<rocblas_double_complex *>(Y),
        incY));
  }

  static void GEMM_STRIDED_BATCH(
      rocblas_handle handle,
      rocblas_operation transa,
      rocblas_operation transb,
      int m,
      int n,
      int k,
514 515
      const phi::dtype::complex<double> *alpha,
      const phi::dtype::complex<double> *A,
516
      int lda,
517 518
      long long int strideA,                 // NOLINT
      const phi::dtype::complex<double> *B,  // NOLINT
519 520
      int ldb,
      long long int strideB,  // NOLINT
521 522
      const phi::dtype::complex<double> *beta,
      phi::dtype::complex<double> *C,
523 524 525
      int ldc,
      long long int strideC,  // NOLINT
      int batchCount) {
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_zgemm_strided_batched(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_double_complex *>(alpha),
        reinterpret_cast<const rocblas_double_complex *>(A),
        lda,
        strideA,
        reinterpret_cast<const rocblas_double_complex *>(B),
        ldb,
        strideB,
        reinterpret_cast<const rocblas_double_complex *>(beta),
        reinterpret_cast<rocblas_double_complex *>(C),
        ldc,
        strideC,
        batchCount));
545 546 547 548 549 550 551 552
  }

  static void GEMM(rocblas_handle handle,
                   rocblas_operation transa,
                   rocblas_operation transb,
                   int m,
                   int n,
                   int k,
553 554
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *A,
555
                   int lda,
556
                   const phi::dtype::complex<double> *B,
557
                   int ldb,
558 559
                   const phi::dtype::complex<double> *beta,
                   phi::dtype::complex<double> *C,
560
                   int ldc) {
561
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_zgemm(
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_double_complex *>(alpha),
        reinterpret_cast<const rocblas_double_complex *>(A),
        lda,
        reinterpret_cast<const rocblas_double_complex *>(B),
        ldb,
        reinterpret_cast<const rocblas_double_complex *>(beta),
        reinterpret_cast<rocblas_double_complex *>(C),
        ldc));
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
581
  static void GEMM_EX(phi::GPUContext *dev_ctx,
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
                      rocblas_operation transa,
                      rocblas_operation transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      rocblas_datatype Atype,
                      int lda,
                      const void *B,
                      rocblas_datatype Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      rocblas_datatype Ctype,
                      int ldc,
                      rocblas_datatype computeType) {
    rocblas_gemm_algo algo = rocblas_gemm_algo_standard;
    dev_ctx->TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_gemm_ex(handle,
                                                               transa,
                                                               transb,
                                                               m,
                                                               n,
                                                               k,
                                                               alpha,
                                                               A,
                                                               Atype,
                                                               lda,
                                                               B,
                                                               Btype,
                                                               ldb,
                                                               beta,
                                                               C,
                                                               Ctype,
                                                               ldc,
                                                               C,
                                                               Ctype,
                                                               ldc,
                                                               computeType,
                                                               algo,
                                                               0,
                                                               0));
625 626 627 628 629 630
    });
  }
};

template <>
template <typename T>
631 632 633 634 635 636 637 638 639 640
void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                 CBLAS_TRANSPOSE transB,
                                 int M,
                                 int N,
                                 int K,
                                 T alpha,
                                 const T *A,
                                 const T *B,
                                 T beta,
                                 T *C) const {
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GEMM(handle,
                    cuTransB,
                    cuTransA,
                    N,
                    M,
                    K,
                    &alpha,
                    B,
                    ldb,
                    A,
                    lda,
                    &beta,
                    C,
                    N);
  });
}

template <>
template <>
671 672 673 674 675 676 677 678 679 680
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        const phi::dtype::float16 *B,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C) const {
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      53,
696
      phi::errors::InvalidArgument(
697 698 699 700 701 702 703
          "cublas fp16 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
  CUBlas<phi::dtype::float16>::GEMM_EX(&cuda_ctx,
                                       cuTransB,
                                       cuTransA,
                                       N,
                                       M,
                                       K,
                                       &h_alpha,
                                       B,
                                       rocblas_datatype_f16_r,
                                       ldb,
                                       A,
                                       rocblas_datatype_f16_r,
                                       lda,
                                       &h_beta,
                                       C,
                                       rocblas_datatype_f16_r,
                                       N,
                                       rocblas_datatype_f32_r);
723 724 725 726
}

template <>
template <>
727 728 729 730 731 732 733 734 735 736
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::bfloat16 alpha,
                                        const phi::dtype::bfloat16 *A,
                                        const phi::dtype::bfloat16 *B,
                                        phi::dtype::bfloat16 beta,
                                        phi::dtype::bfloat16 *C) const {
737 738 739 740 741 742 743 744 745 746 747 748 749 750
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  // TODO(zhiqiu): 80 has the same meaning for rocm and cuda?
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      80,
751
      phi::errors::InvalidArgument(
752 753 754 755 756 757 758 759 760 761
          "rocblas fp16 gemm requires GPU compute capability >= 80,"
          "but received %d",
          context_.GetComputeCapability()));

  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);
  rocblas_gemm_algo algo = rocblas_gemm_algo_standard;

  context_.TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
    PADDLE_ENFORCE_GPU_SUCCESS(
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
        phi::dynload::rocblas_gemm_ex(handle,
                                      cuTransB,
                                      cuTransA,
                                      N,
                                      M,
                                      K,
                                      &h_alpha,
                                      B,
                                      rocblas_datatype_bf16_r,
                                      ldb,
                                      A,
                                      rocblas_datatype_bf16_r,
                                      lda,
                                      &h_beta,
                                      C,
                                      rocblas_datatype_bf16_r,
                                      N,
                                      C,
                                      rocblas_datatype_bf16_r,
                                      N,
                                      rocblas_datatype_f32_r,
                                      algo,
                                      0,
                                      0));
786 787 788 789 790
  });
}

template <>
template <>
791 792 793 794 795
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
796 797 798 799 800
                                        phi::dtype::complex<float> alpha,
                                        const phi::dtype::complex<float> *A,
                                        const phi::dtype::complex<float> *B,
                                        phi::dtype::complex<float> beta,
                                        phi::dtype::complex<float> *C) const {
801 802 803 804 805 806 807 808 809 810
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
811 812

  // TODO(kexinzhao): add processing code for compute capability < 53 case
813 814
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
815
      53,
816
      phi::errors::InvalidArgument(
817
          "cublas complex64 gemm requires GPU compute capability >= 53,"
818 819 820
          "but received %d",
          context_.GetComputeCapability()));

821 822 823
  thrust::complex<float> c_alpha =
      thrust::complex<float>(alpha.real, alpha.imag);
  thrust::complex<float> c_beta = thrust::complex<float>(beta.real, beta.imag);
824

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
  CUBlas<phi::dtype::complex<float>>::GEMM_EX(&cuda_ctx,
                                              cuTransB,
                                              cuTransA,
                                              N,
                                              M,
                                              K,
                                              &c_alpha,
                                              B,
                                              rocblas_datatype_f32_c,
                                              ldb,
                                              A,
                                              rocblas_datatype_f32_c,
                                              lda,
                                              &c_beta,
                                              C,
                                              rocblas_datatype_f32_c,
                                              N,
                                              rocblas_datatype_f32_c);
844 845 846 847
}

template <>
template <>
848 849 850 851 852 853 854 855 856 857
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::complex<double> alpha,
                                        const phi::dtype::complex<double> *A,
                                        const phi::dtype::complex<double> *B,
                                        phi::dtype::complex<double> beta,
                                        phi::dtype::complex<double> *C) const {
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      53,
873
      phi::errors::InvalidArgument(
874 875 876 877 878 879 880 881 882
          "cublas complex128 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  thrust::complex<double> c_alpha =
      thrust::complex<double>(alpha.real, alpha.imag);
  thrust::complex<double> c_beta =
      thrust::complex<double>(beta.real, beta.imag);

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
  CUBlas<phi::dtype::complex<double>>::GEMM_EX(&cuda_ctx,
                                               cuTransB,
                                               cuTransA,
                                               N,
                                               M,
                                               K,
                                               &c_alpha,
                                               B,
                                               rocblas_datatype_f64_c,
                                               ldb,
                                               A,
                                               rocblas_datatype_f64_c,
                                               lda,
                                               &c_beta,
                                               C,
                                               rocblas_datatype_f64_c,
                                               N,
                                               rocblas_datatype_f64_c);
902 903 904 905
}

template <>
template <typename T>
906 907 908 909 910 911 912 913 914 915 916 917 918
void Blas<phi::GPUContext>::GEMM(bool transA,
                                 bool transB,
                                 int M,
                                 int N,
                                 int K,
                                 T alpha,
                                 const T *A,
                                 int lda,
                                 const T *B,
                                 int ldb,
                                 T beta,
                                 T *C,
                                 int ldc) const {
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  rocblas_operation cuTransA =
      transA ? rocblas_operation_transpose : rocblas_operation_none;
  rocblas_operation cuTransB =
      transB ? rocblas_operation_transpose : rocblas_operation_none;
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GEMM(handle,
                    cuTransB,
                    cuTransA,
                    N,
                    M,
                    K,
                    &alpha,
                    B,
                    ldb,
                    A,
                    lda,
                    &beta,
                    C,
                    ldc);
  });
}

template <>
template <>
945 946 947 948 949 950 951 952 953 954 955 956 957
inline void Blas<phi::GPUContext>::GEMM(bool transA,
                                        bool transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        int lda,
                                        const phi::dtype::float16 *B,
                                        int ldb,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C,
                                        int ldc) const {
958 959 960 961 962 963 964 965
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  rocblas_operation cuTransA =
      transA ? rocblas_operation_transpose : rocblas_operation_none;
  rocblas_operation cuTransB =
      transB ? rocblas_operation_transpose : rocblas_operation_none;

  context_.CublasCall([&](rocblas_handle handle) {
966 967 968 969 970 971 972 973 974 975 976 977 978 979
    CUBlas<phi::dtype::float16>::GEMM(handle,
                                      cuTransB,
                                      cuTransA,
                                      N,
                                      M,
                                      K,
                                      &alpha,
                                      B,
                                      ldb,
                                      A,
                                      lda,
                                      &beta,
                                      C,
                                      ldc);
980 981 982 983 984
  });
}

template <>
template <typename T>
985
void Blas<phi::GPUContext>::AXPY(int n, T alpha, const T *x, T *y) const {
986 987 988 989 990 991 992
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::AXPY(handle, n, &alpha, x, 1, y, 1);
  });
}

template <>
template <typename T>
993
void Blas<phi::GPUContext>::SCAL(int n, const T alpha, T *x) const {
994 995 996 997 998 999
  context_.CublasCall(
      [&](rocblas_handle handle) { CUBlas<T>::SCAL(handle, n, &alpha, x, 1); });
}

template <>
template <typename T>
1000
void Blas<phi::GPUContext>::VCOPY(int n, const T *x, T *y) const {
1001 1002 1003 1004 1005 1006
  context_.CublasCall(
      [&](rocblas_handle handle) { CUBlas<T>::VCOPY(handle, n, x, 1, y, 1); });
}

template <>
template <typename T>
1007 1008 1009 1010 1011 1012 1013 1014
void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                 int M,
                                 int N,
                                 T alpha,
                                 const T *A,
                                 const T *B,
                                 T beta,
                                 T *C) const {
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
  rocblas_operation cuTransA =
      !trans_a ? rocblas_operation_transpose : rocblas_operation_none;

  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GEMV(handle, cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1);
  });
}

template <>
template <>
1025 1026 1027 1028 1029 1030 1031 1032
inline void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                        int M,
                                        int N,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        const phi::dtype::float16 *B,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C) const {
1033 1034
  // Because cublas doesn't support half gemv, we use cublasHgemm to achieve it.
  if (trans_a) {
1035
    this->template GEMM<phi::dtype::float16>(
1036 1037
        CblasNoTrans, CblasNoTrans, 1, N, M, alpha, B, A, beta, C);
  } else {
1038
    this->template GEMM<phi::dtype::float16>(
1039 1040 1041 1042 1043 1044
        CblasNoTrans, CblasNoTrans, M, 1, N, alpha, A, B, beta, C);
  }
}

template <>
template <>
1045 1046 1047 1048 1049 1050 1051 1052
inline void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                        int M,
                                        int N,
                                        phi::dtype::bfloat16 alpha,
                                        const phi::dtype::bfloat16 *A,
                                        const phi::dtype::bfloat16 *B,
                                        phi::dtype::bfloat16 beta,
                                        phi::dtype::bfloat16 *C) const {
1053 1054
  // Because rocblas doesn't support bfloat16 gemv, we use gemmex to achieve it.
  if (trans_a) {
1055
    this->template GEMM<phi::dtype::bfloat16>(
1056 1057
        CblasNoTrans, CblasNoTrans, 1, N, M, alpha, B, A, beta, C);
  } else {
1058
    this->template GEMM<phi::dtype::bfloat16>(
1059 1060 1061 1062 1063 1064
        CblasNoTrans, CblasNoTrans, M, 1, N, alpha, A, B, beta, C);
  }
}

template <>
template <typename T>
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        T alpha,
                                        const T *A,
                                        const T *B,
                                        T beta,
                                        T *C,
                                        int batchCount,
                                        int64_t strideA,
                                        int64_t strideB) const {
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  const int64_t strideC = M * N;
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GEMM_STRIDED_BATCH(handle,
                                  cuTransB,
                                  cuTransA,
                                  N,
                                  M,
                                  K,
                                  &alpha,
                                  B,
                                  ldb,
                                  strideB,
                                  A,
                                  lda,
                                  strideA,
                                  &beta,
                                  C,
                                  ldc,
                                  strideC,
                                  batchCount);
  });
}

R
ronnywang 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
// note(wangran16): unknown bug. parameters dislocation when calling
// GEMM_STRIDED_BATCH<float> and GEMM_STRIDED_BATCH<double>
template <>
template <>
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               float alpha,
                                               const float *A,
                                               const float *B,
                                               float beta,
                                               float *C,
                                               int batchCount,
                                               int64_t strideA,
                                               int64_t strideB) const {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  const int64_t strideC = M * N;
  context_.CublasCall([&](rocblas_handle handle) {
    PADDLE_ENFORCE_GPU_SUCCESS(
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
        phi::dynload::rocblas_sgemm_strided_batched(handle,
                                                    cuTransB,
                                                    cuTransA,
                                                    N,
                                                    M,
                                                    K,
                                                    &alpha,
                                                    B,
                                                    ldb,
                                                    strideB,
                                                    A,
                                                    lda,
                                                    strideA,
                                                    &beta,
                                                    C,
                                                    ldc,
                                                    strideC,
                                                    batchCount));
R
ronnywang 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
  });
}

template <>
template <>
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               double alpha,
                                               const double *A,
                                               const double *B,
                                               double beta,
                                               double *C,
                                               int batchCount,
                                               int64_t strideA,
                                               int64_t strideB) const {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  const int64_t strideC = M * N;
  context_.CublasCall([&](rocblas_handle handle) {
    PADDLE_ENFORCE_GPU_SUCCESS(
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
        phi::dynload::rocblas_dgemm_strided_batched(handle,
                                                    cuTransB,
                                                    cuTransA,
                                                    N,
                                                    M,
                                                    K,
                                                    &alpha,
                                                    B,
                                                    ldb,
                                                    strideB,
                                                    A,
                                                    lda,
                                                    strideA,
                                                    &beta,
                                                    C,
                                                    ldc,
                                                    strideC,
                                                    batchCount));
R
ronnywang 已提交
1211 1212 1213
  });
}

1214 1215
template <>
template <>
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::bfloat16 alpha,
                                               const phi::dtype::bfloat16 *A,
                                               const phi::dtype::bfloat16 *B,
                                               phi::dtype::bfloat16 beta,
                                               phi::dtype::bfloat16 *C,
                                               int batchCount,
                                               int64_t strideA,
                                               int64_t strideB) const {
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  const int64_t strideC = M * N;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);
  rocblas_gemm_algo algo = rocblas_gemm_algo_standard;

  context_.TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
    PADDLE_ENFORCE_GPU_SUCCESS(
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
        phi::dynload::rocblas_gemm_strided_batched_ex(handle,
                                                      cuTransB,
                                                      cuTransA,
                                                      N,
                                                      M,
                                                      K,
                                                      &h_alpha,
                                                      B,
                                                      rocblas_datatype_bf16_r,
                                                      ldb,
                                                      strideB,
                                                      A,
                                                      rocblas_datatype_bf16_r,
                                                      lda,
                                                      strideA,
                                                      &h_beta,
                                                      C,
                                                      rocblas_datatype_bf16_r,
                                                      ldc,
                                                      strideC,
                                                      C,
                                                      rocblas_datatype_bf16_r,
                                                      ldc,
                                                      strideC,
                                                      batchCount,
                                                      rocblas_datatype_f32_r,
                                                      algo,
                                                      0,
                                                      0));
1274 1275 1276 1277 1278
  });
}

template <>
template <typename T>
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        T alpha,
                                        const T **A,
                                        const T **B,
                                        T beta,
                                        T **C,
                                        int batchCount) const {
1290 1291 1292 1293 1294 1295 1296 1297
  for (int k = 0; k < batchCount; ++k) {
    this->template GEMM<T>(
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <>
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::float16 alpha,
                                               const phi::dtype::float16 **A,
                                               const phi::dtype::float16 **B,
                                               phi::dtype::float16 beta,
                                               phi::dtype::float16 **C,
                                               int batchCount) const {
1309
  for (int k = 0; k < batchCount; ++k) {
1310
    this->template GEMM<phi::dtype::float16>(
1311 1312 1313 1314 1315 1316
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <>
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::bfloat16 alpha,
                                               const phi::dtype::bfloat16 **A,
                                               const phi::dtype::bfloat16 **B,
                                               phi::dtype::bfloat16 beta,
                                               phi::dtype::bfloat16 **C,
                                               int batchCount) const {
1328
  for (int k = 0; k < batchCount; ++k) {
1329
    this->template GEMM<phi::dtype::bfloat16>(
1330 1331 1332 1333 1334 1335
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <typename T>
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
void Blas<phi::GPUContext>::TRSM(CBLAS_SIDE side,
                                 CBLAS_UPLO uplo,
                                 CBLAS_TRANSPOSE transA,
                                 CBLAS_DIAG diag,
                                 int M,
                                 int N,
                                 T alpha,
                                 const T *A,
                                 int lda,
                                 T *B,
                                 int ldb) const {
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
  // solve row major `op ( A ) X = α B` by taking it as `X' op ( A' )  =  α B'`
  // where ' stands for transpose
  rocblas_side cuSide =
      (side == CblasLeft) ? rocblas_side_right : rocblas_side_left;
  rocblas_fill cuUplo =
      (uplo == CblasLower) ? rocblas_fill_upper : rocblas_fill_lower;
  // use CUBLAS_OP_C (conjugate transpose) for complex
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_diagonal cuDiag =
      (diag == CblasUnit) ? rocblas_diagonal_unit : rocblas_diagonal_non_unit;

  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::TRSM(
        handle, cuSide, cuUplo, cuTransA, cuDiag, N, M, &alpha, A, lda, B, ldb);
  });
}

template <>
template <typename T>
1368
void Blas<phi::GPUContext>::BatchedGETRF(
1369 1370 1371 1372 1373 1374 1375 1376
    int n, T **a, int *ipiv, int *info, int batch_size) const {
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GETRF_BATCH(handle, n, a, n, ipiv, info, batch_size);
  });
}

template <>
template <typename T>
1377 1378 1379 1380 1381 1382
void Blas<phi::GPUContext>::BatchedGETRI(int n,
                                         const T **a,
                                         const int *ipiv,
                                         T **a_inv,
                                         int *info,
                                         int batch_size) const {
1383 1384 1385
  PADDLE_ENFORCE_NE(
      a_inv,
      a,
1386
      phi::errors::InvalidArgument(
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
          "cuBLAS fuction 'cublas<S/D>getrfBatched' cannot be executed "
          "in-place. The memory space of output matrix (address: %p) cannot "
          "overlap memory space of input matrix (address: %p).",
          a_inv,
          a));
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GETRI_BATCH(handle, n, a, n, ipiv, a_inv, n, info, batch_size);
  });
}

template <>
template <typename T>
1399
void Blas<phi::GPUContext>::BatchedMatInv(
1400 1401 1402 1403 1404 1405 1406 1407
    int n, const T **a, T **a_inv, int *info, int batch_size) const {
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::MATINV_BATCH(handle, n, a, n, a_inv, n, info, batch_size);
  });
}

template <>
template <typename T>
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
void Blas<phi::GPUContext>::BatchedGETRS(CBLAS_TRANSPOSE trans,
                                         int n,
                                         int nrhs,
                                         const T **a,
                                         int lda,
                                         int *ipiv,
                                         T **b,
                                         int ldb,
                                         int *info,
                                         int batch_size) const {
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
  rocblas_operation cuTrans = (trans == CblasNoTrans)
                                  ? rocblas_operation_none
                                  : rocblas_operation_transpose;
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GETRS_BATCH(
        handle, cuTrans, n, nrhs, a, lda, ipiv, b, ldb, info, batch_size);
  });
}

template <>
template <typename T>
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
void Blas<phi::GPUContext>::BatchedTRSM(CBLAS_SIDE side,
                                        CBLAS_UPLO uplo,
                                        CBLAS_TRANSPOSE transA,
                                        CBLAS_DIAG diag,
                                        int M,
                                        int N,
                                        T alpha,
                                        const T **A,
                                        int lda,
                                        T **B,
                                        int ldb,
                                        int batch_size) const {
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
  // solve row major `op ( A ) X = α B` by taking it as `X' op ( A' )  =  α B'`
  // where ' stands for transpose
  rocblas_side cuSide =
      (side == CblasLeft) ? rocblas_side_right : rocblas_side_left;
  rocblas_fill cuUplo =
      (uplo == CblasLower) ? rocblas_fill_upper : rocblas_fill_lower;
  // use CUBLAS_OP_C (conjugate transpose) for complex
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_diagonal cuDiag =
      (diag == CblasUnit) ? rocblas_diagonal_unit : rocblas_diagonal_non_unit;

  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::TRSM_BATCH(handle,
                          cuSide,
                          cuUplo,
                          cuTransA,
                          cuDiag,
                          N,
                          M,
                          &alpha,
                          A,
                          lda,
                          B,
                          ldb,
                          batch_size);
  });
}

}  // namespace funcs
1472
}  // namespace phi