mkldnn_pass_util.h 6.6 KB
Newer Older
B
baoachun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <string>
18

B
baoachun 已提交
19 20 21 22 23 24
#include "paddle/fluid/framework/ir/graph_helper.h"

namespace paddle {
namespace framework {
namespace ir {

25 26 27
using StringPairMap =
    std::unordered_map<std::string, std::pair<bool, phi::DenseTensor>>;

B
baoachun 已提交
28
static void SaveInfoInTheFirstOp(
29 30 31
    ir::Graph* graph,
    const std::string& flag,
    const std::string& key_suffix,
B
baoachun 已提交
32 33 34 35 36 37 38
    const std::unordered_map<std::string, std::vector<float>>& info_map) {
  VLOG(3) << "save variables in the first op's attr";

  const std::string suffix = "_" + key_suffix + "_" + flag;
  for (auto* op_node :
       ir::TopologyVarientSort(*graph, static_cast<ir::SortKind>(0))) {
    if (!op_node->IsOp() || op_node->Op()->Type() == "feed" ||
39 40
        op_node->Op()->Type() == "fetch" ||
        op_node->Op()->Type() == "fill_constant")
B
baoachun 已提交
41 42 43 44 45 46 47 48 49 50
      continue;

    op_node->Op()->SetAttr(flag, true);
    for (auto iter = info_map.begin(); iter != info_map.end(); ++iter) {
      op_node->Op()->SetAttr(iter->first + suffix, iter->second);
    }
    break;
  }
}

51 52 53 54 55 56 57 58 59 60
static void SaveInfoInTheFirstOp(ir::Graph* graph,
                                 const std::string& flag,
                                 const std::string& key_suffix,
                                 const StringPairMap& info_map) {
  VLOG(3) << "save variables in the first op's attr";

  const std::string suffix = "_" + key_suffix + "_" + flag;
  for (auto* op_node :
       ir::TopologyVarientSort(*graph, static_cast<ir::SortKind>(0))) {
    if (!op_node->IsOp() || op_node->Op()->Type() == "feed" ||
61 62
        op_node->Op()->Type() == "fetch" ||
        op_node->Op()->Type() == "fill_constant")
63 64 65 66 67 68 69 70 71 72 73 74 75 76
      continue;

    op_node->Op()->SetAttr(flag, true);
    for (auto iter = info_map.begin(); iter != info_map.end(); ++iter) {
      auto* data = iter->second.second.data<float>();
      std::vector<float> data_v(data, data + iter->second.second.numel());
      op_node->Op()->SetAttr(iter->first + suffix + "_unsigned",
                             iter->second.first);
      op_node->Op()->SetAttr(iter->first + suffix, data_v);
    }
    break;
  }
}

B
baoachun 已提交
77
static void GetInfoFromTheFirstOp(
78 79 80
    ir::Graph* graph,
    const std::string& flag,
    const std::string& key_suffix,
B
baoachun 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    std::unordered_map<std::string, std::vector<float>>* info_map) {
  VLOG(3) << "get variables from the first op's attr";

  const std::string suffix = "_" + key_suffix + "_" + flag;
  for (auto* op_node :
       ir::TopologyVarientSort(*graph, static_cast<ir::SortKind>(0))) {
    if (!op_node->IsOp() || op_node->Op()->Type() == "feed" ||
        op_node->Op()->Type() == "fetch")
      continue;

    auto* op_desc = op_node->Op();
    if (op_desc->GetAttrIfExists<bool>(flag)) {
      op_desc->RemoveAttr(flag);
      std::vector<std::string> attr_names = op_desc->AttrNames();
      for (auto fake_name : attr_names) {
        size_t pos = fake_name.find(suffix);
        if (pos != std::string::npos) {
          std::string name = fake_name.substr(0, pos);
          auto scales_vector =
R
Ruibiao Chen 已提交
100
              PADDLE_GET_CONST(std::vector<float>, op_desc->GetAttr(fake_name));
B
baoachun 已提交
101 102 103 104 105 106 107 108 109
          info_map->insert(std::make_pair(name, scales_vector));
          op_desc->RemoveAttr(fake_name);
        }
      }
      break;
    }
  }
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
static void GetInfoFromTheFirstOp(ir::Graph* graph,
                                  const std::string& flag,
                                  const std::string& key_suffix,
                                  StringPairMap* info_map) {
  VLOG(3) << "get variables from the first op's attr";
  const std::string unsigned_flag = "_unsigned";
  const std::string suffix = "_" + key_suffix + "_" + flag;
  const std::string suffix_is_unsigned = suffix + unsigned_flag;
  for (auto* op_node :
       ir::TopologyVarientSort(*graph, static_cast<ir::SortKind>(0))) {
    if (!op_node->IsOp() || op_node->Op()->Type() == "feed" ||
        op_node->Op()->Type() == "fetch")
      continue;

    auto* op_desc = op_node->Op();
    if (op_desc->GetAttrIfExists<bool>(flag)) {
      op_desc->RemoveAttr(flag);
      std::vector<std::string> attr_names = op_desc->AttrNames();
      for (auto fake_name : attr_names) {
        auto is_unsigned = false;
        size_t pos = fake_name.find(suffix_is_unsigned);

        if (pos != std::string::npos) {
          std::string unsigned_var_name = fake_name;
          is_unsigned =
              PADDLE_GET_CONST(bool, op_desc->GetAttr(unsigned_var_name));

          std::string var_name = fake_name.substr(0, pos);
          size_t unsigned_pos = fake_name.find(unsigned_flag);
          std::string vector_name =
              fake_name.erase(unsigned_pos, unsigned_flag.length());
          auto scales_vector = PADDLE_GET_CONST(std::vector<float>,
                                                op_desc->GetAttr(vector_name));
          phi::DenseTensor tensor;
          const int size = static_cast<int>(scales_vector.size());
145
          auto data = tensor.mutable_data<double>({size}, phi::CPUPlace());
146 147 148 149 150 151 152 153 154 155 156 157
          std::copy(scales_vector.begin(), scales_vector.end(), data);
          auto pair = std::make_pair(is_unsigned, tensor);
          info_map->insert(std::make_pair(var_name, pair));
          op_desc->RemoveAttr(unsigned_var_name);
          op_desc->RemoveAttr(vector_name);
        }
      }
      break;
    }
  }
}

S
Sławomir Siwek 已提交
158 159 160 161 162
inline void ConvertToFusedOp(OpDesc* op) {
  const std::map<std::string, std::string> fused_ops = {
      {"conv2d", "fused_conv2d"},
      {"depthwise_conv2d", "fused_conv2d"},
      {"matmul", "fused_matmul"},
S
Sławomir Siwek 已提交
163
      {"matmul_v2", "fused_matmul"},
164 165
      {"softplus", "fused_softplus"},
      {"transpose2", "fused_transpose"}};
S
Sławomir Siwek 已提交
166 167 168 169 170 171 172 173 174 175 176

  if (op->Type() == "matmul") {
    op->SetAttr("trans_x", op->GetAttr("transpose_X"));
    op->SetAttr("trans_y", op->GetAttr("transpose_Y"));
    op->SetAttr("matmul_alpha", op->GetAttr("alpha"));
  }

  auto it = fused_ops.find(op->Type());
  if (it != fused_ops.end()) {
    op->SetType(it->second);
    VLOG(3) << "Converted " << it->first << " to " << it->second;
177 178
  } else {
    VLOG(3) << "Fused op for " << op->Type() << " is not implemented yet.";
S
Sławomir Siwek 已提交
179 180 181
  }
}

B
baoachun 已提交
182 183 184
}  // namespace ir
}  // namespace framework
}  // namespace paddle