solve_op.cc 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/solve_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/ddim.h"

namespace paddle {
namespace operators {

using framework::OpKernelType;
using framework::Tensor;

class SolveOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Solve");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "Solve");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Solve");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");

    std::vector<int64_t> x_dims_vec =
        paddle::framework::vectorize(ctx->GetInputDim("X"));
    std::vector<int64_t> y_dims_vec =
        paddle::framework::vectorize(ctx->GetInputDim("Y"));

    auto x_dims_n = x_dims_vec.size();
    auto y_dims_n = y_dims_vec.size();

    PADDLE_ENFORCE_GT(x_dims_n, 1,
                      platform::errors::InvalidArgument(
                          "The input tensor X's dimensions of SolveOp "
                          "should be larger than 1. But received X's "
                          "dimensions = %d, X's shape = [%s]",
                          x_dims_n, x_dims));

    PADDLE_ENFORCE_GE(y_dims_n, 1,
                      platform::errors::InvalidArgument(
                          "The input tensor Y's dimensions of SolveOp "
                          "should be larger than or equal 1. But received Y's "
                          "dimensions = %d, Y's shape = [%s]",
                          y_dims_n, y_dims));

    PADDLE_ENFORCE_EQ(x_dims[x_dims_n - 2], x_dims[x_dims_n - 1],
                      platform::errors::InvalidArgument(
                          "The inner-most 2 dimensions of Input(X) all should "
                          "be square matrices "
                          "But received X's shape[-2] = %d and shape[-1] = %d.",
                          x_dims[x_dims_n - 2], x_dims[x_dims_n - 1]));

    bool x_broadcasted = false, y_broadcasted = false;
    bool trans_x = false, trans_y = false;
    if (x_dims_n == 1) {
      x_dims_vec.insert(x_dims_vec.begin(), 1);
      x_dims_n = 2;
      x_broadcasted = true;
    }

    if (y_dims_n == 1) {
      y_dims_vec.push_back(1);
      y_dims_n = 2;
      y_broadcasted = true;
    }

    size_t M, N;
    if (trans_x) {
      M = x_dims_vec[x_dims_n - 1];
    } else {
      M = x_dims_vec[x_dims_n - 2];
    }
    if (trans_y) {
      N = y_dims_vec[y_dims_n - 2];
    } else {
      N = y_dims_vec[y_dims_n - 1];
    }

    std::vector<int64_t> new_dims;
    if (x_dims_n >= y_dims_n) {
      new_dims.assign(x_dims_vec.begin(), x_dims_vec.end() - 2);
    } else {
      new_dims.assign(y_dims_vec.begin(), y_dims_vec.end() - 2);
    }
    if (!x_broadcasted) {
      new_dims.push_back(M);
    }
    if (!y_broadcasted) {
      new_dims.push_back(N);
    }
    if (x_broadcasted && y_broadcasted) {
      new_dims.push_back(1);
    }

    auto out_dims = framework::make_ddim(new_dims);
    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("X", /*->*/ "Out");
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
};

class SolveOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor), The first input tensor of solve op.");
    AddInput("Y", "(Tensor), The second input tensor of solve op.");
    AddOutput("Out", "(Tensor), The output tensor of solve op.");
    AddComment(R"DOC(
          Solve Operator.
          This operator is used to computes the solution of a square system of 
          linear equations with a unique solution for input $X$ and $Y$.

          The equation is:
          $$Out = X^-1 * Y$$
)DOC");
  }
};

class SolveOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
      const override {
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
  }
};

class SolveGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "solve");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "solve");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "solve");
    // reuse the linalg.solve forward output
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "solve");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
  }
};

template <typename T>
class SolveOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("solve_grad");
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    // reuse the linalg.solve forward output
    retv->SetInput("Out", this->Output("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(solve, ops::SolveOp, ops::SolveOpMaker,
                  ops::SolveOpInferVarType,
                  ops::SolveOpGradMaker<paddle::framework::OpDesc>,
                  ops::SolveOpGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(solve_grad, ops::SolveGradOp);

REGISTER_OP_CPU_KERNEL(
    solve, ops::SolveKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SolveKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    solve_grad, ops::SolveGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SolveGradKernel<paddle::platform::CPUDeviceContext, double>);