parallel_dygraph_mnist.py 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import contextlib
import unittest
import numpy as np
import six
import pickle

import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
29
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
from paddle.fluid.dygraph.base import to_variable

from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase


class SimpleImgConvPool(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
53
        super(SimpleImgConvPool, self).__init__()
54 55

        self._conv2d = Conv2D(
56
            num_channels=num_channels,
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)

    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x


class MNIST(fluid.dygraph.Layer):
82 83
    def __init__(self):
        super(MNIST, self).__init__()
84 85

        self._simple_img_conv_pool_1 = SimpleImgConvPool(
86
            1, 20, 5, 2, 2, act="relu")
87 88

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
89
            20, 50, 5, 2, 2, act="relu")
90

91
        self.pool_2_shape = 50 * 4 * 4
92
        SIZE = 10
93 94 95 96 97 98 99 100
        scale = (2.0 / (self.pool_2_shape**2 * SIZE))**0.5
        self._fc = Linear(
            self.pool_2_shape,
            10,
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.NormalInitializer(
                    loc=0.0, scale=scale)),
            act="softmax")
101

Y
Yan Xu 已提交
102
    def forward(self, inputs, label):
103 104
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
105
        x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
Y
Yan Xu 已提交
106 107 108 109
        cost = self._fc(x)
        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)
        return avg_loss
110 111 112 113


class TestMnist(TestParallelDyGraphRunnerBase):
    def get_model(self):
114
        model = MNIST()
115 116
        train_reader = paddle.batch(
            paddle.dataset.mnist.train(), batch_size=2, drop_last=True)
117 118
        opt = paddle.optimizer.Adam(
            learning_rate=1e-3, parameters=model.parameters())
119 120 121 122 123 124 125 126 127 128 129 130
        return model, train_reader, opt

    def run_one_loop(self, model, opt, data):
        batch_size = len(data)
        dy_x_data = np.array([x[0].reshape(1, 28, 28)
                              for x in data]).astype('float32')
        y_data = np.array(
            [x[1] for x in data]).astype('int64').reshape(batch_size, 1)
        img = to_variable(dy_x_data)
        label = to_variable(y_data)
        label.stop_gradient = True

Y
Yan Xu 已提交
131 132
        avg_loss = model(img, label)

133 134 135 136 137
        return avg_loss


if __name__ == "__main__":
    runtime_main(TestMnist)