dropout_op.cu 6.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15
#include <cuda.h>
#include <curand_kernel.h>
16 17 18 19
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
P
phlrain 已提交
20
#include <string>
21
#include "paddle/fluid/memory/memcpy.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/operators/dropout_op.h"
23
#include "paddle/fluid/platform/dynload/curand.h"
K
Kexin Zhao 已提交
24
#include "paddle/fluid/platform/float16.h"
25

26 27 28
namespace paddle {
namespace operators {

Z
Zeng Jinle 已提交
29
template <typename T, typename MaskType>
30 31
__global__ void RandomGenerator(const size_t n, const int seed,
                                const float dropout_prob, const T* src,
Z
Zeng Jinle 已提交
32
                                MaskType* mask_data, T* dst,
P
phlrain 已提交
33
                                bool is_upscale_in_train) {
34
  curandStatePhilox4_32_10_t state;
D
dzhwinter 已提交
35
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
36 37
  int step_size = 0;

Z
Zeng Jinle 已提交
38
  MaskType mask;
39
  T dest;
D
dzhwinter 已提交
40
  for (; idx < n; idx += blockDim.x * gridDim.x) {
41 42
    T s = src[idx];
    if (step_size == 0) {
43
      curand_init(seed, idx, idx, &state);
44 45
      step_size = blockDim.x * gridDim.x;
    } else {
46
      curand_init(seed, idx, step_size, &state);
47
    }
48
    if (curand_uniform(&state) < dropout_prob) {
Z
Zeng Jinle 已提交
49 50
      mask = 0;
      dest = 0;
51
    } else {
Z
Zeng Jinle 已提交
52
      mask = 1;
P
phlrain 已提交
53
      if (is_upscale_in_train) {
Z
Zeng Jinle 已提交
54
        dest = s / static_cast<T>(1.0f - dropout_prob);
P
phlrain 已提交
55
      } else {
Z
Zeng Jinle 已提交
56
        dest = s;
P
phlrain 已提交
57
      }
58 59 60
    }
    mask_data[idx] = mask;
    dst[idx] = dest;
61
  }
D
dzhwinter 已提交
62
}
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
template <typename T, typename MaskType>
__global__ void RandomGeneratorWithSeed(const size_t n, const int* seed,
                                        const float dropout_prob, const T* src,
                                        MaskType* mask_data, T* dst,
                                        bool is_upscale_in_train) {
  curandStatePhilox4_32_10_t state;
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  int step_size = 0;

  MaskType mask;
  T dest;
  for (; idx < n; idx += blockDim.x * gridDim.x) {
    T s = src[idx];
    if (step_size == 0) {
      curand_init(seed[0], idx, idx, &state);
      step_size = blockDim.x * gridDim.x;
    } else {
      curand_init(seed[0], idx, step_size, &state);
    }
    if (curand_uniform(&state) < dropout_prob) {
      mask = 0;
      dest = 0;
    } else {
      mask = 1;
      if (is_upscale_in_train) {
        dest = s / static_cast<T>(1.0f - dropout_prob);
      } else {
        dest = s;
      }
    }
    mask_data[idx] = mask;
    dst[idx] = dest;
  }
}

99 100 101
// It seems that Eigen::Tensor::setRandom in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
K
Kexin Zhao 已提交
102
template <typename Place, typename T>
Y
Yu Yang 已提交
103
class GPUDropoutKernel : public framework::OpKernel<T> {
104 105 106
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
M
mapingshuo 已提交
107 108
    auto* seed =
        context.HasInput("Seed") ? context.Input<Tensor>("Seed") : nullptr;
109 110
    auto* y = context.Output<Tensor>("Out");
    y->mutable_data<T>(context.GetPlace());
K
Kexin Zhao 已提交
111
    float dropout_prob = context.Attr<float>("dropout_prob");
112

Z
Zeng Jinle 已提交
113
    auto& dropout_implementation =
P
phlrain 已提交
114
        context.Attr<std::string>("dropout_implementation");
Z
Zeng Jinle 已提交
115 116
    bool upscale_in_train = (dropout_implementation == "upscale_in_train");

Q
QI JUN 已提交
117
    auto& place = *context.template device_context<Place>().eigen_device();
118
    if (!context.Attr<bool>("is_test")) {
Z
Zeng Jinle 已提交
119 120 121
      int64_t x_numel = x->numel();
      auto stream = context.cuda_device_context().stream();

122
      auto* mask = context.Output<Tensor>("Mask");
Z
Zeng Jinle 已提交
123
      auto* mask_data = mask->mutable_data<uint8_t>(context.GetPlace());
D
dzhwinter 已提交
124 125 126
      size_t size = framework::product(mask->dims());
      auto* x_data = x->data<T>();
      auto* y_data = y->mutable_data<T>(context.GetPlace());
Z
Zeng Jinle 已提交
127
      if (dropout_prob == 1.0f) {
128 129 130 131
        PADDLE_ENFORCE_CUDA_SUCCESS(
            cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
        PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemsetAsync(
            mask_data, 0, x_numel * sizeof(*mask_data), stream));
Z
Zeng Jinle 已提交
132 133
        return;
      }
134

D
dzhwinter 已提交
135
      int threads = 512;
Z
Zeng Jinle 已提交
136
      int grid = (x_numel + threads - 1) / threads;
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
      if (seed && platform::is_gpu_place(seed->place())) {
        auto seed_gpu_data = seed->data<int>();
        RandomGeneratorWithSeed<T, uint8_t><<<grid, threads, 0, stream>>>(
            size, seed_gpu_data, dropout_prob, x_data, mask_data, y_data,
            upscale_in_train);
        return;
      }
      int seed_data;
      std::random_device rnd;
      if (seed) {
        seed_data = *(seed->data<int>());
      } else {
        seed_data =
            context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : rnd();
      }

Z
Zeng Jinle 已提交
153
      RandomGenerator<T, uint8_t><<<grid, threads, 0, stream>>>(
M
mapingshuo 已提交
154
          size, seed_data, dropout_prob, x_data, mask_data, y_data,
Z
Zeng Jinle 已提交
155
          upscale_in_train);
156
    } else {
157 158
      auto X = EigenMatrix<T>::Reshape(*x, 1);
      auto Y = EigenMatrix<T>::Reshape(*y, 1);
Z
Zeng Jinle 已提交
159
      if (upscale_in_train) {
P
phlrain 已提交
160 161 162 163
        Y.device(place) = X;
      } else {
        Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
      }
164
    }
165 166 167 168 169 170
  }
};

}  // namespace operators
}  // namespace paddle

X
Xinghai Sun 已提交
171
namespace ops = paddle::operators;
K
Kexin Zhao 已提交
172
namespace plat = paddle::platform;
Q
QI JUN 已提交
173
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
174
    dropout, ops::GPUDropoutKernel<plat::CUDADeviceContext, float>,
P
phlrain 已提交
175 176 177 178
    ops::GPUDropoutKernel<plat::CUDADeviceContext, plat::float16>,
    ops::GPUDropoutKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    dropout_grad, ops::DropoutGradKernel<plat::CUDADeviceContext, float>,
179
    ops::DropoutGradKernel<plat::CUDADeviceContext, plat::float16>,
P
phlrain 已提交
180
    ops::DropoutGradKernel<plat::CUDADeviceContext, double>);