api.html 37.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>PaddlePaddle Design Doc &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
65
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
66 67 68 69 70 71 72 73 74 75 76 77
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
78
          <li><a href="/">Home</a></li>
79 80 81 82 83 84
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a></li>
85 86 87
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_cn.html">安装与编译</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶使用</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dev/index_cn.html">开发标准</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
112 113
<li class="toctree-l2"><a class="reference internal" href="../getstarted/quickstart_cn.html">快速开始</a></li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
114 115
</ul>
</li>
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_cn.html">用Docker编译和测试PaddlePaddle</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶使用</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/cmd_parameter/index_cn.html">命令行参数设置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/cluster/index_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/preparations_cn.html">环境准备</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/cmd_argument_cn.html">启动参数说明</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/multi_cluster/index_cn.html">在不同集群中运行</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/fabric_cn.html">使用fabric启动集群训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/openmpi_cn.html">在OpenMPI集群中提交训练作业</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_aws_cn.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
139 140 141 142
</ul>
</li>
</ul>
</li>
143 144 145 146
<li class="toctree-l2"><a class="reference internal" href="../howto/capi/index_cn.html">C-API预测库</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/compile_paddle_lib_cn.html">安装与编译C-API预测库</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/workflow_of_capi_cn.html">C-API使用流程</a></li>
147 148
</ul>
</li>
149
<li class="toctree-l2"><a class="reference internal" href="../howto/rnn/index_cn.html">RNN模型</a><ul>
150 151 152 153
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
154 155
</ul>
</li>
156
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能调优</a></li>
157 158
</ul>
</li>
159 160 161
<li class="toctree-l1"><a class="reference internal" href="../dev/index_cn.html">开发标准</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/write_docs_cn.html">如何贡献文档</a></li>
162 163
</ul>
</li>
164
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a><ul>
165 166 167
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
168
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
169 170 171 172 173 174
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
175 176 177 178 179 180
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
181
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">训练与应用</a></li>
182
<li class="toctree-l2"><a class="reference internal" href="../api/v2/fluid.html">Fluid</a><ul>
183 184 185 186 187 188 189 190 191 192 193
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/layers.html">layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/data_feeder.html">data_feeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/executor.html">executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/initializer.html">initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/evaluator.html">evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/nets.html">nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/optimizer.html">optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/param_attr.html">param_attr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/profiler.html">profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/regularizer.html">regularizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/io.html">io</a></li>
194 195
</ul>
</li>
196 197
</ul>
</li>
198 199 200 201 202 203 204 205
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>PaddlePaddle Design Doc</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="paddlepaddle-design-doc">
<span id="paddlepaddle-design-doc"></span><h1>PaddlePaddle Design Doc<a class="headerlink" href="#paddlepaddle-design-doc" title="永久链接至标题"></a></h1>
<div class="section" id="ingredients">
<span id="ingredients"></span><h2>Ingredients<a class="headerlink" href="#ingredients" title="永久链接至标题"></a></h2>
<p>As our design principle is starting from the essence: how could we
240
allow users to express and solve their problems as neural networks.
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
Some essential concepts that our API have to provide include:</p>
<ol class="simple">
<li>A <em>topology</em> is an expression of <em>layers</em>.</li>
<li>A layer could be any kind of computation, including <em>cost</em>.</li>
<li>Some layers have parameters, some don&#8217;t. Most costs don&#8217;t have
parameters.</li>
<li>In some topologies, layers share parameters.  For
example,
<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/issues/1311#issuecomment-279121850">the network for training a ranking model</a>.</li>
<li>At programming time, users specify topologies and possible sharing
of parameters.  PaddlePaddle can figure out and create parameters
required (and possibly shared) by one or more topologies.</li>
</ol>
</div>
<div class="section" id="starting-from-examples">
<span id="starting-from-examples"></span><h2>Starting from Examples<a class="headerlink" href="#starting-from-examples" title="永久链接至标题"></a></h2>
<p>As a summarization
of
<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/issues/1315">our disucssion</a>,
let us present two examples here:</p>
<div class="section" id="example-1-sharing-parameters-between-layers">
<span id="example-1-sharing-parameters-between-layers"></span><h3>Example 1. Sharing Parameters between Layers<a class="headerlink" href="#example-1-sharing-parameters-between-layers" title="永久链接至标题"></a></h3>
<p>We use
the
<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/issues/1311#issuecomment-279121850">3-branch ranking</a> model
in this example.  For your convenience, I copy-a-paste the model&#8217;s
topology as follows:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">A</span> <span class="o">-&gt;</span> <span class="n">f</span> <span class="o">-</span>\
<span class="n">Q</span> <span class="o">-&gt;</span> <span class="n">f</span> <span class="o">--&gt;</span> <span class="n">cost</span>
<span class="n">B</span> <span class="o">-&gt;</span> <span class="n">f</span> <span class="o">-/</span>
</pre></div>
</div>
<p>The following program trains the topology including the cost, and then
use the sub-network in the trained topology in inference:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">f</span><span class="p">(</span><span class="ow">in</span><span class="p">):</span>
    <span class="n">e</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="ow">in</span><span class="p">,</span> <span class="n">parameter_name</span><span class="o">=</span><span class="s2">&quot;embedding&quot;</span><span class="p">)</span>
    <span class="n">o</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">e</span><span class="p">,</span> <span class="n">parameter_name</span><span class="o">=</span><span class="s2">&quot;semantic&quot;</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">o</span>

<span class="c1"># Create 3 topologies (subnets), they share parameters because all</span>
<span class="c1"># correspoinding layers have the same parameter names.</span>
<span class="n">fA</span> <span class="o">=</span> <span class="n">f</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">input_name</span><span class="o">=</span><span class="s2">&quot;A&quot;</span><span class="p">))</span>
<span class="n">fB</span> <span class="o">=</span> <span class="n">f</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">input_name</span><span class="o">=</span><span class="s2">&quot;B&quot;</span><span class="p">))</span>
<span class="n">fQ</span> <span class="o">=</span> <span class="n">f</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">input_name</span><span class="o">=</span><span class="s2">&quot;Q&quot;</span><span class="p">))</span>

<span class="n">topology</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">less_than</span><span class="p">(</span>
               <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">cross_entropy</span><span class="p">(</span><span class="n">fA</span><span class="p">,</span> <span class="n">fQ</span><span class="p">),</span>
               <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">corss_entropy</span><span class="p">(</span><span class="n">fB</span><span class="p">,</span> <span class="n">fQ</span><span class="p">))</span>

<span class="c1"># Derive parameters required in topology and create them in model.</span>
<span class="n">parameters</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">parameters</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">topology</span><span class="p">)</span>

<span class="c1"># Estimate parameters used in topology from data.</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">topology</span><span class="p">,</span> <span class="n">parameters</span><span class="p">,</span> <span class="n">reader</span><span class="o">=</span><span class="n">read_ranking_model_data</span><span class="p">)</span>

<span class="c1"># Inference using fA (or fB or fC, as they share their parameters).</span>
<span class="p">[</span><span class="n">testA</span><span class="p">,</span> <span class="n">testB</span><span class="p">,</span> <span class="n">testQ</span><span class="p">]</span> <span class="o">=</span> <span class="n">read_ranking_model_data</span><span class="p">()</span>
<span class="k">print</span> <span class="s2">&quot;The sematic-vector of testA: &quot;</span><span class="p">,</span> <span class="n">paddle</span><span class="o">.</span><span class="n">infer</span><span class="p">(</span><span class="n">fA</span><span class="p">,</span> <span class="n">parameters</span><span class="p">,</span> <span class="n">testA</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="example-2-sharing-parameters-between-models">
<span id="example-2-sharing-parameters-between-models"></span><h3>Example 2. Sharing Parameters between &#8220;Models&#8221;<a class="headerlink" href="#example-2-sharing-parameters-between-models" title="永久链接至标题"></a></h3>
<p>We use <a class="reference external" href="https://github.com/PaddlePaddle/book/tree/develop/gan">GAN</a> in
this example.  In the following example program, <code class="docutils literal"><span class="pre">d0</span></code> and <code class="docutils literal"><span class="pre">d1</span></code>
correspond to the two networks in the following figure:</p>
<p><img src="https://github.com/wangyang59/book/raw/00036f4b0da5225041a6824587c1a01cf20159b1/gan/image/gan_ig.png" width=400 /></p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">G</span><span class="p">(</span><span class="ow">in</span><span class="p">):</span>
    <span class="c1"># over-simplified example as G has only one layers:</span>
    <span class="k">return</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="ow">in</span><span class="p">,</span> <span class="n">parameter_name</span><span class="o">=</span><span class="s2">&quot;G&quot;</span><span class="p">)</span>

<span class="k">def</span> <span class="nf">D</span><span class="p">(</span><span class="ow">in</span><span class="p">);</span>
    <span class="c1"># again, over-simplified:</span>
    <span class="k">return</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="ow">in</span><span class="p">,</span> <span class="n">parameter_name</span><span class="o">=</span><span class="s2">&quot;D&quot;</span><span class="p">)</span>

<span class="c1"># Construct the first topology, which contains both D and G.</span>
<span class="c1"># By learning this topology, we update parameters of G.</span>
<span class="n">d0</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">should_be_false</span><span class="p">(</span><span class="n">D</span><span class="p">(</span><span class="n">G</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">())))</span>

<span class="c1"># Construct a second topology d1, which contains only D. By</span>
<span class="c1"># training this topology, we update parameters of D.  Note</span>
<span class="c1"># that d1 share parameters with d0.</span>
<span class="n">d1</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">should_be_true</span><span class="p">(</span><span class="n">D</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">()))</span>

<span class="c1"># Create parameters from a list of multiple topologies (models) for</span>
<span class="c1"># the chance to share parameters between these topologies.</span>
<span class="n">parameters</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">parameters</span><span class="o">.</span><span class="n">create</span><span class="p">([</span><span class="n">d0</span><span class="p">,</span> <span class="n">d1</span><span class="p">])</span>

<span class="c1"># Iterative training of GAN.</span>
<span class="k">for</span> <span class="o">...</span><span class="p">:</span>
    <span class="n">train</span><span class="p">(</span><span class="n">d0</span><span class="p">,</span> <span class="n">parameters</span><span class="p">,</span> <span class="n">reader</span><span class="o">=</span><span class="n">read_from_rng</span><span class="p">,</span> <span class="n">immutable_parameters</span><span class="o">=</span><span class="p">{</span><span class="s2">&quot;D&quot;</span><span class="p">})</span>
    <span class="n">train</span><span class="p">(</span><span class="n">d1</span><span class="p">,</span> <span class="n">parameters</span><span class="p">,</span> <span class="n">reader</span><span class="o">=</span><span class="n">read_from_realistic_images</span><span class="p">)</span>

<span class="c1"># Use d1 for inference:</span>
<span class="k">print</span> <span class="s2">&quot;D thinks a batch of images are realistic &quot;</span><span class="p">,</span> <span class="n">infer</span><span class="p">(</span><span class="n">d1</span><span class="p">,</span> <span class="n">parameters</span><span class="p">,</span> <span class="n">read_mnist_images</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="summarization">
<span id="summarization"></span><h3>Summarization<a class="headerlink" href="#summarization" title="永久链接至标题"></a></h3>
<p>Above two programs reveal some important design concerns:</p>
<ol class="simple">
<li>Users describe a topology as an expression of layers.  Every layer
has a <em>parameter name</em>.  If the users don&#8217;t specify it explicitly, it&#8217;s automatically generated as a unique name.  By
specifying the parameter name, users can specify the sharing of
parameters between layers and even between topologies.</li>
<li><code class="docutils literal"><span class="pre">paddle.parameters.create</span></code> figures out parameters required by one
or more topologies from parameter names of layers.  It creates these
parameters and returns a <code class="docutils literal"><span class="pre">ParameterSet</span></code> object, which is in essence
a map from <em>parameter names</em> to <em>parameters</em>.</li>
<li>At training and inference time, <code class="docutils literal"><span class="pre">paddle.train</span></code> and <code class="docutils literal"><span class="pre">paddle.infer</span></code>
requires both a topology and the parameter set that holds the parameters of that topology.  There are some reasons:<ol>
<li>This prevents users from forgetting to call
<code class="docutils literal"><span class="pre">paddle.parameters.create</span></code>.</li>
<li><code class="docutils literal"><span class="pre">paddle.train</span></code> needs to know which parameter set to update.</li>
<li>Users could load another (pre-trained) parameter set and use it
with a topology in <code class="docutils literal"><span class="pre">train.infer</span></code>.</li>
</ol>
</li>
<li>By specifying the <code class="docutils literal"><span class="pre">immutable_parameters</span></code> parameter of
<code class="docutils literal"><span class="pre">paddle.train</span></code>, we can forbid the update of these parameters.</li>
</ol>
</div>
</div>
<div class="section" id="reader">
<span id="reader"></span><h2>Reader<a class="headerlink" href="#reader" title="永久链接至标题"></a></h2>
<p>Not all programming frameworks allow users to define I/O functions.
An example is Google MapReduce, which can only read from text,
SSTable, and RecordIO files.  Hadoop MapReduce allows users to define
readers and writers by deriving from base classes <code class="docutils literal"><span class="pre">Reader</span></code> and
<code class="docutils literal"><span class="pre">Writer</span></code>.  The former is less flexible but also less error-prone.  We
decide to provide the flexibility to users to define their readers.</p>
<p>There are some open questions here:</p>
<ol class="simple">
<li><strong>Should a reader return a Python dictionary?</strong></li>
<li><strong>How to map multiple outputs from a reader to multiple data layers?</strong></li>
<li><strong>How to easily compose some existing readers to read more data and
feed a topology with more data layers?</strong></li>
</ol>
</div>
<div class="section" id="training">
<span id="training"></span><h2>Training<a class="headerlink" href="#training" title="永久链接至标题"></a></h2>
<p>The recommended way to training a model is to call <code class="docutils literal"><span class="pre">paddle.train</span></code>,
which simply calls <code class="docutils literal"><span class="pre">paddle.trainer.Default</span></code>, a global variable of
type <code class="docutils literal"><span class="pre">paddle.trainer.SGD</span></code>.  Equivalently, we can do</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">opt</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">trainer</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="o">...</span><span class="p">,</span> <span class="n">paddle</span><span class="o">.</span><span class="n">updater</span><span class="o">.</span><span class="n">Adam</span><span class="p">(</span><span class="o">...</span><span class="p">))</span>
<span class="n">opt</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">topology</span><span class="p">,</span> <span class="n">parameters</span><span class="p">,</span> <span class="n">reader</span><span class="o">=</span><span class="n">read</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
<div class="section" id="updater">
<span id="updater"></span><h3>Updater<a class="headerlink" href="#updater" title="永久链接至标题"></a></h3>
<p>Please be aware that a trainer can accept an updater as its data
member, where an updater is a class derived from
<code class="docutils literal"><span class="pre">paddle.trainer.Updater</span></code>.  This is to make it easier to customize
trainers, as discussed
<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/issues/1319">here</a>.</p>
</div>
<div class="section" id="event-handler">
<span id="event-handler"></span><h3>Event Handler<a class="headerlink" href="#event-handler" title="永久链接至标题"></a></h3>
<p><code class="docutils literal"><span class="pre">paddle.train</span></code> and <code class="docutils literal"><span class="pre">paddle.trainer.XXX.train</span></code> take an optional
parameter <code class="docutils literal"><span class="pre">event_handler</span></code>, which should be either <code class="docutils literal"><span class="pre">None</span></code> or a function
that handle some events:</p>
<ol class="simple">
<li>BeginTraining</li>
<li>EndTraining</li>
<li>BeginIteration</li>
<li>EndIteration</li>
<li>BeginPass</li>
<li>EndPass</li>
</ol>
<p>where EndPass is sent if and only if the reader yields
<code class="docutils literal"><span class="pre">end_pass=True</span></code>.</p>
<p>An example as follows:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">event_handler</span><span class="p">(</span><span class="n">event</span><span class="p">):</span>
    <span class="k">if</span> <span class="n">ininstance</span><span class="p">(</span><span class="n">event</span><span class="p">,</span> <span class="n">paddle</span><span class="o">.</span><span class="n">event</span><span class="o">.</span><span class="n">EndIteration</span><span class="p">):</span>
        <span class="k">print</span> <span class="n">paddle</span><span class="o">.</span><span class="n">test</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>

<span class="n">paddle</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">topology</span><span class="p">,</span> <span class="n">parameters</span><span class="p">,</span> <span class="n">reader</span><span class="p">,</span> <span class="n">event_handler</span><span class="p">)</span>
</pre></div>
</div>
<p>If we are writing a PaddlePaddle program in and for iPython/Jypyter,
we can use metaplotlib in the event handler to plot a curve of
cost/error versus iterations, as shown
<a class="reference external" href="https://blog.dominodatalab.com/interactive-dashboards-in-jupyter/">here</a>.</p>
</div>
<div class="section" id="distributed-training">
<span id="distributed-training"></span><h3>Distributed Training<a class="headerlink" href="#distributed-training" title="永久链接至标题"></a></h3>
<p>If users want to do distributed training on a cluster, s/he should
call <code class="docutils literal"><span class="pre">paddle.dist_train</span></code> and provides access tokens to the cluster as
a parameter.</p>
<p>For example, if the user has a TLS certificate that allows him to
access a Kubernetes cluster, s/he should be able to call</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">paddle</span><span class="o">.</span><span class="n">dist_train</span><span class="p">(</span><span class="n">model</span><span class="p">,</span>
                  <span class="n">trainer</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">trainer</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="o">...</span><span class="p">,</span>
                                             <span class="n">paddle</span><span class="o">.</span><span class="n">updater</span><span class="o">.</span><span class="n">Adam</span><span class="p">(</span><span class="o">...</span><span class="p">)),</span>
                  <span class="n">reader</span><span class="o">=</span><span class="n">read</span><span class="p">,</span>
                  <span class="n">k8s_user</span><span class="o">=</span><span class="s2">&quot;yi&quot;</span><span class="p">,</span>
                  <span class="n">k8s_token</span><span class="o">=</span><span class="s2">&quot;kube_cluster_tls.pem&quot;</span><span class="p">,</span>
                  <span class="n">k8s_job</span><span class="o">=</span><span class="s2">&quot;hello&quot;</span><span class="p">,</span>
                  <span class="n">num_parameter_servers</span><span class="o">=</span><span class="mi">15</span><span class="p">)</span>
</pre></div>
</div>
443
<p>The pseudo code of <code class="docutils literal"><span class="pre">paddle.dist_train</span></code> is as follows:</p>
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">dist_train</span><span class="p">(</span><span class="n">topology</span><span class="p">,</span> <span class="n">parameters</span><span class="p">,</span> <span class="n">trainer</span><span class="p">,</span> <span class="n">reader</span><span class="p">,</span> <span class="o">...</span><span class="p">):</span>
    <span class="k">if</span> <span class="n">os</span><span class="o">.</span><span class="n">getenv</span><span class="p">(</span><span class="s2">&quot;KUBERNETES_SERVICE_HOST&quot;</span><span class="p">)</span> <span class="o">==</span> <span class="bp">None</span><span class="p">:</span>
        <span class="n">image_name</span> <span class="o">=</span> <span class="n">k8s_user</span> <span class="o">+</span> <span class="s1">&#39;/&#39;</span> <span class="o">+</span> <span class="n">k8s_job</span>
        <span class="n">docker_build</span><span class="p">(</span><span class="n">image_name</span><span class="p">)</span>
        <span class="n">docker_push</span><span class="p">()</span>
        <span class="n">kube_ctrl_start_job</span><span class="p">(</span><span class="n">image_name</span><span class="p">,</span> <span class="n">k8s_user</span><span class="p">,</span> <span class="n">k8s_token</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">rank</span> <span class="o">=</span> <span class="n">kube_list_containers_in_job_and_return_current_containers_rank</span><span class="p">()</span>
        <span class="k">if</span> <span class="n">rank</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
            <span class="n">master</span><span class="p">()</span>
        <span class="k">elif</span> <span class="n">rank</span> <span class="o">&lt;</span> <span class="mi">15</span><span class="p">:</span>
            <span class="n">parameter_server</span><span class="p">()</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">trainer</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">reader</span><span class="o">=</span><span class="n">read</span><span class="p">)</span>
</pre></div>
</div>
<p>Please be aware that if a process is running on the Kubernetes
cluster, it will have some environment variables pre-defined.</p>
<p>If <code class="docutils literal"><span class="pre">dist_train</span></code> doesn&#8217;t see these environment variables, it knows
that it&#8217;s running on users&#8217; personal computer, and it should work as a
<em>launcher</em>.  Otherwise, it knows that it&#8217;s running on the cluster and
need to figure out its role as either the master, or a trainer, or a
parameter server.</p>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
506 507
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
508 509 510 511 512 513
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
514
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
515 516 517 518 519 520 521 522 523 524 525 526 527
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
528
</html>