base_cost.py 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

from collections import OrderedDict
import paddle

COMM_OP_TYPE = [
    "send_v2", "recv_v2", "c_broadcast", "c_allgather", "c_allreduce_sum"
]
NON_COMP_TYPE = ["while"] + COMM_OP_TYPE
C
caozhou 已提交
22
_g_op_cost_factory = {}
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130


def _parse_op_to_desc(op, dist_context=None):
    desc = {}
    desc["op"] = op.type
    vars = op.block.vars
    input_desc = OrderedDict()
    for input_name in op.input_names:
        var_name_list = op.input(input_name)
        var_desc = []
        for var_name in var_name_list:
            var = vars[var_name]
            shape = None
            if dist_context is not None:
                dist_tensor = dist_context.get_dist_tensor_for_program(var)
                shape = dist_tensor.local_sizes()
            else:
                shape = var.shape
            assert shape is not None
            var_desc.append((var.dtype, shape))
        input_desc[input_name] = var_desc
    desc["inputs"] = input_desc

    output_desc = OrderedDict()
    for out_name in op.output_names:
        var_name_list = op.output(out_name)
        var_desc = []
        for var_name in var_name_list:
            var = vars[var_name]
            shape = None
            if dist_context is not None:
                dist_tensor = dist_context.get_dist_tensor_for_program(var)
                shape = dist_tensor.local_sizes()
            else:
                shape = var.shape
            assert shape is not None
            var_desc.append((var.dtype, shape))
        output_desc[out_name] = var_desc
    desc["outputs"] = output_desc

    attr_desc = op.all_attrs
    desc["attrs"] = attr_desc

    return desc


def parse_to_desc(op=None, dist_op=None, dist_context=None):
    desc = None
    if op is None and dist_op is not None and dist_context is not None:
        desc = _parse_op_to_desc(
            op=dist_op.serial_op, dist_context=dist_context)
    elif op is not None and dist_op is None and dist_context is None:
        desc = _parse_op_to_desc(op)

    return desc


def parse_desc_to_str(desc):
    def _parse_dtype(dtype):
        dtype_str = ""
        if dtype == paddle.float32:
            dtype_str = "float32"
        elif dtype == paddle.float16:
            dtype_str = "float16"
        elif dtype == paddle.int32:
            dtype_str = "int32"
        elif dtype == paddle.int64:
            dtype_str = "int64"
        elif dtype == paddle.unit8:
            dtype_str = "unit8"
        else:
            raise TypeError("Unsupported dtype {}".format(dtype))
        return dtype_str

    assert isinstance(desc, dict)
    desc_str_list = []
    desc_str = None
    dtype_str_list = []
    dims_list = []
    shape_list = []

    desc_str_list.append(desc["op"])
    inputs = desc["inputs"]
    for key, item in inputs.items():
        for dtype, shape in item:
            dtype_str_list.append(_parse_dtype(dtype))
            shape_list += list(shape)
            dims = len(shape)
            dims_list.append(dims)

    dtype_str = "*".join(dtype_str_list)
    dims_list = [str(item) for item in dims_list]
    dims_str = "*".join(dims_list)

    shape_list = [str(item) for item in shape_list]
    shape_str = "[" + ",".join(shape_list) + "]"
    desc_str_list += [dtype_str, dims_str, shape_str]
    desc_str = "_".join(desc_str_list)

    return desc_str


class CommContext:
    _instance = None
    _has_instance = False

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
C
caozhou 已提交
131
            cls._instance = super().__new__(cls)
132 133 134
            _has_instance = True
        return cls._instance

C
caozhou 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    def __init__(self, cluster):
        if CommContext._has_instance:
            return
        self.beta = {}
        self.hops = {}
        self.cluster = cluster
        # if cluster has no info about those vars, it will be set by default
        self.base_ring = None
        self.base_tree = None
        # self.base_inter_ring = None
        # self.base_inter_tree = None
        self.intra_ring = None
        self.intra_tree = None
        self.inter_ring = None
        self.inter_tree = None
        self.switch = None
        self._post_init()

    def _post_init(self):
        alpha_latency = self.cluster.alpha_latency
        if alpha_latency is None:
            # set default
            self.base_ring = 8.4
            self.base_tree = 0.
            # NVL in default
            self.intra_ring = 3.4
            self.intra_tree = 28
            # NET in default
            self.inter_ring = 9.6
            self.inter_tree = 28
            self.switch = 10.0
        else:
            base_ring = alpha_latency.base_ring
            self.base_ring = base_ring if base_ring is not None else 8.4

            base_tree = alpha_latency.base_tree
            self.base_tree = base_tree if base_tree is not None else 0.

            intra_ring = alpha_latency.intra_ring
            if intra_ring == LinkType.NVL:
                self.intra_ring = 3.4
            elif intra_ring == LinkType.PHB:
                self.intra_ring = 5.7
            elif intra_ring is not None:
                self.intra_ring = intra_ring
            else:
                # NVL Default
                self.intra_ring = 3.4

            intra_tree = alpha_latency.intra_tree
            if intra_tree == LinkType.NVL:
                self.intra_tree = 28
            elif intra_tree == LinkType.PHB:
                self.intra_tree = 28
            elif intra_tree is not None:
                self.intra_tree = intra_tree
            else:
                # NVL Default
                self.intra_tree = 28

            inter_ring = alpha_latency.inter_ring
            if inter_ring == LinkType.NET:
                self.inter_ring = 9.6
            elif inter_ring is not None:
                self.inter_ring = inter_ring
            else:
                # NET Default
                self.inter_ring = 9.6

            inter_tree = alpha_latency.inter_tree
            if inter_tree == LinkType.NET:
                self.inter_tree = 28
            elif inter_tree is not None:
                self.inter_tree = inter_tree
            else:
                # NET Default
                self.inter_tree = 28

            switch = alpha_latency.switch
            self.switch = switch if switch is not None else 10

            assert self.base_ring is not None
            assert self.base_tree is not None
            assert self.intra_ring is not None
            assert self.intra_tree is not None
            assert self.inter_ring is not None
            assert self.inter_tree is not None
            assert self.switch is not None

    def get_max_beta(self, ranks):
        # NOTE: Get beta by ring, even in the case of tree such as tree broadcast
        ranks = self.cluster.convert_rank_to_device_id(ranks)
227 228
        key = ','.join(map(str, sorted(ranks)))
        max_beta = None
C
caozhou 已提交
229 230
        if key in self.beta:
            max_beta = self.beta[key]
231 232 233
        else:
            for i in range(len(ranks)):
                for j in range(i + 1, len(ranks)):
C
caozhou 已提交
234 235 236 237 238 239 240
                    forward_order_beta = self.cluster.get_beta(ranks[i],
                                                               ranks[j])
                    backward_order_beta = self.cluster.get_beta(ranks[j],
                                                                ranks[i])
                    beta = forward_order_beta if forward_order_beta > backward_order_beta else backward_order_beta
                    if max_beta == None:
                        max_beta = beta
241 242 243
                    else:
                        if beta > max_beta:
                            max_beta = beta
C
caozhou 已提交
244
            self.beta[key] = max_beta
245 246 247

        return max_beta

C
caozhou 已提交
248 249 250 251 252 253 254 255 256 257 258
    def get_hops(self, ranks):
        key = ','.join(map(str, sorted(ranks)))
        hops = 0
        for i in range(len(ranks)):
            for j in range(i + 1, len(ranks)):
                hop = self.cluster.get_hop(ranks[i], ranks[j])
                hops += hop
        self.hops[key] = hops

        return hops

259 260 261 262 263 264 265 266 267 268 269 270

class Cost:
    def __init__(self, time=0, memory=0, flops=0):
        self.time = time
        self.memory = memory
        self.flops = flops

    def _check_time(self, val):
        assert val >= 0, "Time must be greater than or equal to 0."

    def _check_memory(self, val):
        assert isinstance(
C
caozhou 已提交
271 272
            val,
            int) and val >= 0, "Memory must be int and greater than equal to 0."
273 274 275

    def _check_flops(self, val):
        assert isinstance(
C
caozhou 已提交
276 277
            val,
            int) and val >= 0, "FLOPs must be int and greater than equal to 0."
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

    @property
    def time(self):
        return self._time

    @time.setter
    def time(self, val):
        self._check_time(val)
        self._time = val

    @property
    def memory(self):
        return self._memory

    @memory.setter
    def memory(self, val):
        self._check_memory(val)
        self._memory = val

    @property
    def flops(self):
        return self._flops

    @flops.setter
    def flops(self, val):
        self._check_flops(val)
        self._flops = val

    def __add__(self, rhs):
        assert isinstance(rhs, Cost)
        time = self.time + rhs.time
        memory = self.memory + rhs.memory
        flops = self.flops + rhs.flops
        assert (time >= 0 and memory >= 0 and flops >= 0)
        return Cost(time, memory, flops)

    def __sub__(self, rhs):
        assert isinstance(rhs, Cost)
        time = self.time - rhs.time
        memory = self.memory - rhs.memory
        flops = self.flops - rhs.flops
        assert (time >= 0 and memory >= 0 and flops >= 0)
        return Cost(time, memory, flops)


class OpCost:
    def __init__(self, op=None, op_desc=None):
        assert (op is not None and op_desc is None) or (op is None and
                                                        op_desc is not None)
        self._op = op
        self._op_desc = op_desc
C
caozhou 已提交
329
        self._cost = None
330 331 332 333 334 335 336 337 338

    @property
    def op(self):
        return self._op

    @property
    def op_desc(self):
        return self._op_desc

C
caozhou 已提交
339 340 341 342 343 344 345 346 347 348 349 350
    @property
    def time(self):
        return self.cost.time

    @property
    def memory(self):
        return self.cost.memory

    @property
    def flops(self):
        return self.cost.flops

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    @property
    def cost(self):
        return self._cost

    def calc_time(self):
        return 0

    def calc_memory(self):
        return 0

    def calc_flops(self):
        return 0

    def calc_cost(self):
        time = self.calc_time()
        memory = self.calc_memory()
        flops = self.calc_flops()
        cost = Cost(time, memory, flops)
        return cost

C
caozhou 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    def __add__(self, rhs):
        assert isinstance(rhs, (OpCost, Cost))
        time = 0
        memory = 0
        flops = 0
        if isinstance(rhs, OpCost):
            time = self.cost.time + rhs.cost.time
            memory = self.cost.memory + rhs.cost.memory
            flops = self.cost.flops + rhs.cost.flops
            assert (time >= 0 and memory >= 0 and flops >= 0)
        elif isinstance(rhs, Cost):
            time = self.time + rhs.time
            memory = self.memory + rhs.memory
            flops = self.flops + rhs.flops
            assert (time >= 0 and memory >= 0 and flops >= 0)
        return Cost(time, memory, flops)

    def __sub__(self, rhs):
        assert isinstance(rhs, (OpCost, Cost))
        time = 0
        memory = 0
        flops = 0
        if isinstance(rhs, OpCost):
            time = self.cost.time - rhs.cost.time
            memory = self.cost.memory - rhs.cost.memory
            flops = self.cost.flops - rhs.cost.flops
            assert (time >= 0 and memory >= 0 and flops >= 0)
        elif isinstance(rhs, Cost):
            time = self.time - rhs.time
            memory = self.memory - rhs.memory
            flops = self.flops - rhs.flops
            assert (time >= 0 and memory >= 0 and flops >= 0)
        return Cost(time, memory, flops)

405 406 407 408 409 410 411 412

class CommOpCost(OpCost):
    OP_TYPE = "COMM"

    def __init__(self, op=None, op_desc=None, comm_context=None):
        super(CommOpCost, self).__init__(op=op, op_desc=op_desc)
        self._check_comm_op_type()
        self._comm_context = comm_context
C
caozhou 已提交
413 414 415 416 417 418
        self._group_ranks = None
        self._comm_count = None
        self._hops = None
        self._rank_count = len(self.group_ranks)
        self._machine_count = None
        self._cost = self.calc_cost()
419 420 421 422 423

    @property
    def comm_context(self):
        return self._comm_context

C
caozhou 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    @property
    def comm_count(self):
        if self._comm_count is None:
            dtype = None
            shape = None
            if self.op is not None:
                vars = self.op.block.vars
                # NOTE: The tensor communicated input_name is "X" in default. Otherwise, this function should be overrided
                var_name = self.op.input("X")[0]
                var = vars[var_name]
                dtype = var.dtype
                shape = var.shape
            elif self.op_desc is not None:
                dtype = self.op_desc["inputs"]["X"][0][0]
                shape = self.op_desc["inputs"]["X"][0][1]

            factor = None
            if dtype == paddle.float32 or dtype == paddle.int32:
                factor = 4
            elif dtype == paddle.int64:
                factor = 8
            elif dtype == paddle.uint8:
                factor = 1
            elif dtype == paddle.float16:
                factor = 2
            else:
                raise TypeError("This dtype {} is not supported now".format(
                    dtype))
            comm_count = reduce(lambda x, y: x * y, shape) * factor
            self._comm_count = comm_count

        return self._comm_count

    @property
    def rank_count(self):
        return self._rank_count

    @property
    def machine_count(self):
        if self._machine_count is None:
            cluster = self._comm_context.cluster
            self._machine_count = cluster.get_involved_machine_count(
                self.group_ranks)
        return self._machine_count

    @property
    def hops(self):
        if self._hops is None:
            self._hops = self.comm_context.get_hops(self.group_ranks)
        return self._hops

    @property
    def group_ranks(self):
        if self._group_ranks is None:
            if self.op_desc is not None:
                self._group_ranks = self.op_desc["group_ranks"]
            elif self.op is not None:
                ring_id = op.attrs("ring_id")
                process_group = get_process_group(ring_id)
                if process_group is None:
                    raise ValueError(
                        "There not exists process group whose ring_id is {}.".
                        format(ring_id))
                self._group_ranks = process_group.ranks
        return self._group_ranks

490 491 492 493 494 495 496 497 498 499 500 501 502 503
    @classmethod
    def _check_comm_op_type(cls):
        if cls.OP_TYPE != "COMM":
            if cls.OP_TYPE not in COMM_OP_TYPE:
                raise TypeError("Please Check op type in {}, but got {}.".
                                format(COMM_OP_TYPE, cls.OP_TYPE))


class CompOpCost(OpCost):
    OP_TYPE = "COMP"

    def __init__(self, op=None, op_desc=None, cluster=None):
        super(CompOpCost, self).__init__(op=op, op_desc=op_desc)
        self._check_comp_op_type()
C
caozhou 已提交
504
        self._cost = self.calc_cost()
505 506 507 508 509 510 511 512 513 514 515 516 517 518
        self.cluster = cluster

    @classmethod
    def _check_comp_op_type(cls):
        if cls.OP_TYPE != "COMP":
            if cls.OP_TYPE in NON_COMP_TYPE:
                raise TypeError("Please Check op type not in {}, but got {}.".
                                format(NON_COMP_TYPE, cls.OP_TYPE))


def register_op_cost(cls):
    op_type = cls.OP_TYPE

    def register(op_type):
C
caozhou 已提交
519 520
        global _g_op_cost_factory
        _g_op_cost_factory[op_type] = cls
521

C
caozhou 已提交
522 523
    register(op_type)
    return cls
524 525


C
caozhou 已提交
526
def calc_time_by_modeling(op=None, desc=None, cluster=None):
527 528
    op_type = op.type if op is not None else desc["op"]
    if op_type in COMM_OP_TYPE:
C
caozhou 已提交
529 530 531
        op_cost = _g_op_cost_factory[op_type](op=op,
                                              op_desc=desc,
                                              comm_context=CommContext(cluster))
532
    elif op_type not in NON_COMP_TYPE:
C
caozhou 已提交
533 534 535
        op_cost = _g_op_cost_factory[op_type](op=op,
                                              op_desc=desc,
                                              cluster=cluster)
536 537
    time = op_cost.calc_time()
    return time