regularization.html 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Regularization in PaddlePaddle &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../genindex.html"/>
        <link rel="search" title="Search" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a></li>
87
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_en.html">MOBILE</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
111 112
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
113
<li class="toctree-l3"><a class="reference internal" href="../howto/dev/build_en.html">Build using Docker</a></li>
114
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/build_from_source_en.html">Build from Sources</a></li>
115 116 117 118 119 120 121 122 123 124 125
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
126 127 128 129 130 131 132
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/fabric_en.html">fabric</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/openmpi_en.html">openmpi</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/k8s_en.html">kubernetes</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/k8s_aws_en.html">kubernetes on AWS</a></li>
</ul>
</li>
133
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/new_layer_en.html">Write New Layers</a></li>
134
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
135
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/write_docs_en.html">Contribute Documentation</a></li>
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
154 155 156 157 158 159
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
160
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">Training and Inference</a></li>
161 162 163 164 165 166 167 168 169 170 171 172 173
<li class="toctree-l2"><a class="reference internal" href="../api/v2/fluid.html">Fluid</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/layers.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/regularizer.html">Regularizer</a></li>
</ul>
</li>
174 175 176 177
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
178
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_ios_en.html">Build PaddlePaddle for iOS</a></li>
179
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Regularization in PaddlePaddle</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="regularization-in-paddlepaddle">
<span id="regularization-in-paddlepaddle"></span><h1>Regularization in PaddlePaddle<a class="headerlink" href="#regularization-in-paddlepaddle" title="Permalink to this headline"></a></h1>
<div class="section" id="introduction-to-regularization">
<span id="introduction-to-regularization"></span><h2>Introduction to Regularization<a class="headerlink" href="#introduction-to-regularization" title="Permalink to this headline"></a></h2>
215
<p>A central problem in machine learning is how to design an algorithm that will perform well not just on the training data, but also on new data. A frequently faced problem is the problem of <strong>overfitting</strong>, where the model does not make reliable predictions on new unseen data. <strong>Regularization</strong> is the process of introducing additional information in order to prevent overfitting. This is usually done by adding extra penalties to the loss function that restricts the parameter spaces that an optimization algorithm can explore.</p>
216 217 218 219 220 221 222 223 224 225 226 227 228
<div class="section" id="parameter-norm-penalties">
<span id="parameter-norm-penalties"></span><h3>Parameter Norm Penalties<a class="headerlink" href="#parameter-norm-penalties" title="Permalink to this headline"></a></h3>
<p>Most common regularization approaches in deep learning are based on limiting the capacity of the models by adding a parameter norm penalty to the objective function <code class="docutils literal"><span class="pre">J</span></code>. This is given as follows:</p>
<p><img src="./images/loss_equation.png" align="center"/><br/></p>
<p>The parameter <code class="docutils literal"><span class="pre">alpha</span></code> is a hyperparameter that weights the relative contribution of the norm penalty term, <code class="docutils literal"><span class="pre">omega</span></code>, relative to the standard objective function <code class="docutils literal"><span class="pre">J</span></code>.</p>
<p>The most commonly used norm penalties are the L2 norm penalty and the L1 norm penalty. These are given as follows:</p>
<div class="section" id="l2-regularization">
<span id="l2-regularization"></span><h4>L2 Regularization:<a class="headerlink" href="#l2-regularization" title="Permalink to this headline"></a></h4>
<p><img src="./images/l2_regularization.png" align="center"/><br/></p>
</div>
<div class="section" id="l1-regularization">
<span id="l1-regularization"></span><h4>L1 Regularization<a class="headerlink" href="#l1-regularization" title="Permalink to this headline"></a></h4>
<p><img src="./images/l1_regularization.png" align="center"/><br/></p>
229
<p>A much more detailed mathematical background of regularization can be found <a class="reference external" href="http://www.deeplearningbook.org/contents/regularization.html">here</a>.</p>
230 231 232
</div>
</div>
</div>
233 234 235
<div class="section" id="regularization-survey">
<span id="regularization-survey"></span><h2>Regularization Survey<a class="headerlink" href="#regularization-survey" title="Permalink to this headline"></a></h2>
<p>A detailed survey of regularization in various deep learning frameworks can be found <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/wiki/Regularization-Survey">here</a>.</p>
236 237 238 239 240
</div>
<div class="section" id="proposal-for-regularization-in-paddlepaddle">
<span id="proposal-for-regularization-in-paddlepaddle"></span><h2>Proposal for Regularization in PaddlePaddle<a class="headerlink" href="#proposal-for-regularization-in-paddlepaddle" title="Permalink to this headline"></a></h2>
<div class="section" id="low-level-implementation">
<span id="low-level-implementation"></span><h3>Low-Level implementation<a class="headerlink" href="#low-level-implementation" title="Permalink to this headline"></a></h3>
241
<p>In the new design, we propose to create new operations for regularization. For now, we can add 2 ops that correspond to the most frequently used regularizations:</p>
242 243 244 245
<ul class="simple">
<li>L2_regularization_op</li>
<li>L1_regularization_op</li>
</ul>
246
<p>These ops can be like any other ops with their own CPU/GPU implementations either using Eigen or separate CPU and GPU kernels. As the initial implementation, we can implement their kernels using Eigen following the abstraction pattern implemented for <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/accuracy_op.h">Activation Ops</a>. This abstraction pattern can make it very easy to implement new regularization schemes other than L1 and L2 norm penalties.</p>
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
<p>The idea of building ops for regularization is in sync with the refactored Paddle philosophy of using operators to represent any computation unit. The way these ops will be added to the computation graph, will be decided by the <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function">layer functions</a> in Python API.</p>
</div>
<div class="section" id="computation-graph">
<span id="computation-graph"></span><h3>Computation Graph<a class="headerlink" href="#computation-graph" title="Permalink to this headline"></a></h3>
<p>Below is an example of a really simple feed forward neural network.</p>
<p><img src="./images/feed_forward.png" align="center"/><br/></p>
<p>The Python API will modify this computation graph to add regularization operators. The modified computation graph will look as follows:</p>
<p><img src="./images/feed_forward_regularized.png" align="center"/><br/></p>
</div>
<div class="section" id="python-api-implementation-for-regularization">
<span id="python-api-implementation-for-regularization"></span><h3>Python API implementation for Regularization<a class="headerlink" href="#python-api-implementation-for-regularization" title="Permalink to this headline"></a></h3>
<p>Using the low level ops, <code class="docutils literal"><span class="pre">L2_regularization_op</span></code> and <code class="docutils literal"><span class="pre">L1_regularization_op</span></code>, any user can add regularization to their computation graphs. However, this will require a lot of lines of code and we should design Python APIs that support regularization. An example of such an API can be seen in <a class="reference external" href="https://keras.io/regularizers/">Keras</a>. As per the PaddlePaddle <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md">Python API design</a>, the layer functions are responsible for creating operators, operator parameters and variables. Since regularization is a property of parameters, it makes sense to create these in the layer functions.</p>
<div class="section" id="creation-of-regularization-ops">
<span id="creation-of-regularization-ops"></span><h4>Creation of Regularization ops<a class="headerlink" href="#creation-of-regularization-ops" title="Permalink to this headline"></a></h4>
<p>There are two possibilities for creating the regularization ops:</p>
<ol class="simple">
<li>We create these ops immediately while building the computation graph.</li>
<li>We add these ops in a lazy manner, just before the backward, similar to the way the optimization ops are added.</li>
</ol>
<p>The proposal is to add these ops in a lazy manner just before the backward pass.</p>
</div>
<div class="section" id="storage-of-regularization-attributes">
<span id="storage-of-regularization-attributes"></span><h4>Storage of Regularization attributes<a class="headerlink" href="#storage-of-regularization-attributes" title="Permalink to this headline"></a></h4>
<p>Since we want to create the regularization ops in a lazy manner, the regularization attributes (type of regularization and weight of regularization penalty) can be stored as attributes of the <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/framework.py#L421"><code class="docutils literal"><span class="pre">Parameter</span></code></a> class. This is because regularization is a property of the parameters and storing regularization properties with Parameters also allows for shared parameters.</p>
</div>
<div class="section" id="high-level-api">
<span id="high-level-api"></span><h4>High-level API<a class="headerlink" href="#high-level-api" title="Permalink to this headline"></a></h4>
274
<p>In PaddlePaddle Python API, users will primarily rely on <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function">layer functions</a> to create neural network layers. Hence, we also need to provide regularization functionality in layer functions. The design of these APIs can be postponed for later right now. A good reference for these APIs can be found in <a class="reference external" href="https://keras.io/regularizers/">Keras</a> and also by looking at Tensorflow in <a class="reference external" href="https://www.tensorflow.org/api_guides/python/contrib.layers"><code class="docutils literal"><span class="pre">tf.contrib.layers</span></code></a>.</p>
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
</div>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>