graph.html 18.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
11
  <title>Design Doc: Computations as a Graph &mdash; PaddlePaddle  documentation</title>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../genindex.html"/>
        <link rel="search" title="Search" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a></li>
87
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_en.html">MOBILE</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
111 112
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
113
<li class="toctree-l3"><a class="reference internal" href="../howto/dev/build_en.html">Build using Docker</a></li>
114
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/build_from_source_en.html">Build from Sources</a></li>
115 116 117 118 119 120 121 122 123 124 125
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
126 127 128 129 130 131 132
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/fabric_en.html">fabric</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/openmpi_en.html">openmpi</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/k8s_en.html">kubernetes</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/k8s_aws_en.html">kubernetes on AWS</a></li>
</ul>
</li>
133
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/new_layer_en.html">Write New Layers</a></li>
134
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
135
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/write_docs_en.html">Contribute Documentation</a></li>
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
154 155 156 157 158 159
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
160
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">Training and Inference</a></li>
161 162 163 164 165 166 167 168 169 170 171 172 173
<li class="toctree-l2"><a class="reference internal" href="../api/v2/fluid.html">Fluid</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/layers.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/regularizer.html">Regularizer</a></li>
</ul>
</li>
174 175
</ul>
</li>
176 177
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
178
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_ios_en.html">Build PaddlePaddle for iOS</a></li>
179 180 181
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
</ul>
</li>
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
202
    <li>Design Doc: Computations as a Graph</li>
203 204 205 206 207 208 209 210
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
211 212
  <div class="section" id="design-doc-computations-as-a-graph">
<span id="design-doc-computations-as-a-graph"></span><h1>Design Doc: Computations as a Graph<a class="headerlink" href="#design-doc-computations-as-a-graph" title="Permalink to this headline"></a></h1>
213 214 215 216 217 218 219
<p>A primary goal of the refactorization of PaddlePaddle is a more flexible representation of deep learning computation, in particular, a graph of operators and variables, instead of sequences of layers as before.</p>
<p>This document explains that the construction of a graph as three steps:</p>
<ul class="simple">
<li>construct the forward part</li>
<li>construct the backward part</li>
<li>construct the optimization part</li>
</ul>
220 221
<div class="section" id="the-construction-of-a-graph">
<span id="the-construction-of-a-graph"></span><h2>The Construction of a Graph<a class="headerlink" href="#the-construction-of-a-graph" title="Permalink to this headline"></a></h2>
222 223 224 225 226 227 228 229 230 231
<p>Let us take the problem of image classification as a simple example.  The application program that trains the model looks like:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="s2">&quot;images&quot;</span><span class="p">)</span>
<span class="n">l</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="s2">&quot;label&quot;</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">mse</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">l</span><span class="p">)</span>
<span class="n">optimize</span><span class="p">(</span><span class="n">cost</span><span class="p">)</span>
<span class="n">train</span><span class="p">(</span><span class="n">cost</span><span class="p">,</span> <span class="n">reader</span><span class="o">=</span><span class="n">mnist</span><span class="o">.</span><span class="n">train</span><span class="p">())</span>
</pre></div>
</div>
<div class="section" id="forward-part">
232
<span id="forward-part"></span><h3>Forward Part<a class="headerlink" href="#forward-part" title="Permalink to this headline"></a></h3>
233 234
<p>The first four lines of above program build the forward part of the graph.</p>
<p><img alt="" src="../_images/graph_construction_example_forward_only.png" /></p>
235 236
<p>In particular, the first line <code class="docutils literal"><span class="pre">x</span> <span class="pre">=</span> <span class="pre">layer.data(&quot;images&quot;)</span></code> creates variable x and a Feed operator that copies a column from the minibatch to x.  <code class="docutils literal"><span class="pre">y</span> <span class="pre">=</span> <span class="pre">layer.fc(x)</span></code> creates not only the FC operator and output variable y, but also two parameters, W and b, and the initialization operators.</p>
<p>Initialization operators are kind of &#8220;run-once&#8221; operators &#8211; the <code class="docutils literal"><span class="pre">Run</span></code> method increments a class data member counter so to run at most once.  By doing so, a parameter wouldn&#8217;t be initialized repeatedly, say, in every minibatch.</p>
237 238 239
<p>In this example, all operators are created as <code class="docutils literal"><span class="pre">OpDesc</span></code> protobuf messages, and all variables are <code class="docutils literal"><span class="pre">VarDesc</span></code>.  These protobuf messages are saved in a <code class="docutils literal"><span class="pre">BlockDesc</span></code> protobuf message.</p>
</div>
<div class="section" id="backward-part">
240
<span id="backward-part"></span><h3>Backward Part<a class="headerlink" href="#backward-part" title="Permalink to this headline"></a></h3>
241 242 243 244 245 246 247 248 249 250 251 252
<p>The fifth line <code class="docutils literal"><span class="pre">optimize(cost)</span></code> calls two functions, <code class="docutils literal"><span class="pre">ConstructBackwardGraph</span></code> and <code class="docutils literal"><span class="pre">ConstructOptimizationGraph</span></code>.</p>
<p><code class="docutils literal"><span class="pre">ConstructBackwardGraph</span></code> traverses the forward graph in the <code class="docutils literal"><span class="pre">BlockDesc</span></code> protobuf message and builds the backward part.</p>
<p><img alt="" src="../_images/graph_construction_example_forward_backward.png" /></p>
<p>According to the chain rule of gradient computation, <code class="docutils literal"><span class="pre">ConstructBackwardGraph</span></code> would</p>
<ol class="simple">
<li>create a gradient operator G for each operator F,</li>
<li>make all inputs, outputs, and outputs&#8217; gradient of F as inputs of G,</li>
<li>create gradients for all inputs of F, except for those who don&#8217;t have gradients, like x and l, and</li>
<li>make all these gradients as outputs of G.</li>
</ol>
</div>
<div class="section" id="optimization-part">
253
<span id="optimization-part"></span><h3>Optimization Part<a class="headerlink" href="#optimization-part" title="Permalink to this headline"></a></h3>
254 255 256
<p>For each parameter, like W and b created by <code class="docutils literal"><span class="pre">layer.fc</span></code>, marked as double circles in above graphs, <code class="docutils literal"><span class="pre">ConstructOptimizationGraph</span></code> creates an optimization operator to apply its gradient.  Here results in the complete graph:</p>
<p><img alt="" src="../_images/graph_construction_example_all.png" /></p>
</div>
257 258 259
</div>
<div class="section" id="block-and-graph">
<span id="block-and-graph"></span><h2>Block and Graph<a class="headerlink" href="#block-and-graph" title="Permalink to this headline"></a></h2>
260
<p>The word block and graph are interchangable in the desgin of PaddlePaddle.  A <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/pull/3708">Block</a> is a metaphore of the code and local variables in a pair of curly braces in programming languages, where operators are like statements or instructions.  A graph of operators and variables is a representation of the block.</p>
261 262 263 264 265 266 267
<p>A Block keeps operators in an array <code class="docutils literal"><span class="pre">BlockDesc::ops</span></code></p>
<div class="highlight-protobuf"><div class="highlight"><pre><span></span><span class="kd">message</span> <span class="nc">BlockDesc</span> <span class="p">{</span>
  <span class="k">repeated</span> <span class="n">OpDesc</span> <span class="na">ops</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
  <span class="k">repeated</span> <span class="n">VarDesc</span> <span class="na">vars</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
268
<p>in the order that they appear in user programs, like the Python program at the beginning of this article.  We can imagine that in <code class="docutils literal"><span class="pre">ops</span></code>,  we have some forward operators, followed by some gradient operators, and then some optimization operators.</p>
269
</div>
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>