test_paddle_model_convertor.py 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#!/usr/bin/env python3

# Copyright (c) 2022 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17 18 19 20
import argparse
import logging
import os
import sys
21 22
import unittest

23 24
import numpy as np
from cinn.common import DefaultNVGPUTarget, is_compiled_with_cuda
25 26 27
from cinn.frontend import PaddleModelConvertor
from cinn.runtime import seed as cinn_seed
from op_mappers.op_mapper_test import OpMapperTest
28 29 30
from ops.op_test import OpTestTool

import paddle
31 32 33 34 35

logging.basicConfig(level=os.environ.get('LOG_LEVEL', 'INFO').upper())
logger = logging.getLogger(name="paddle_model_convertor")

parser = argparse.ArgumentParser(
36 37
    description='Load Paddle Model File and Running at CINN'
)
38
parser.add_argument(
39 40
    "--path", help="The path to load the paddle model", type=str, required=True
)
41 42 43 44 45
parser.add_argument(
    "-m",
    "--model_filename",
    help="The filename of model file, default \"__model__\"",
    type=str,
46 47
    default="__model__",
)
48 49 50
parser.add_argument(
    "-p",
    "--params_filename",
51
    help="The filename of model parameter file, default None, in which each parameter will saved in each file",
52
    type=str,
53 54
    default=None,
)
55 56 57 58 59
parser.add_argument(
    "-cuda",
    "--enable_cuda",
    help="Whether enable CUDA, default True",
    type=bool,
60 61
    default=True,
)
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
args = parser.parse_args()

np.random.seed(1234)
paddle.seed(1234)
cinn_seed(1234)

paddle.enable_static()

# first save paddle model like:
# ```
# import paddle
# paddle.enable_static()

# x = paddle.static.data(name='x', shape=[10, 12, 128, 128], dtype='float32')
# y = paddle.static.data(name='y', shape=[10, 12, 128, 128], dtype='float32')
# prediction = paddle.stack([x, y], 1)

# place = paddle.CUDAPlace(0)

# exe = paddle.static.Executor(place)
# exe.run(paddle.static.default_startup_program())
# prog = paddle.static.default_main_program()

# paddle.fluid.io.save_inference_model("./stack", [x.name, y.name], [prediction], exe, prog)
# ```
# Second load and run model like:
# ```
# python test_paddle_model_convertor.py --path build/thirds/resnet_model -m "__model__" -p "params"
# ```


class TestPaddleModel(OpMapperTest):
    def setUp(self):
        if args.enable_cuda:
            self.target = DefaultNVGPUTarget()
            self.place = paddle.CUDAPlace(0)
        else:
            self.target = DefaultHostTarget()
            self.place = paddle.CPUPlace()

        self.model_dir = args.path
        self.model_filename = args.model_filename
        self.params_filename = args.params_filename

        logger.info(
107 108 109 110
            "Run Model From \"{}\", which model filename is \"{}\", and parameter filename is \"{}\"".format(
                self.model_dir, self.model_filename, self.params_filename
            )
        )
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

        self.load_paddle_program()
        self.init_case()

    @staticmethod
    def eliminate_unkown_shape(shape):
        return [1 if dim == -1 else dim for dim in shape]

    def get_paddle_op_attrs(self, op):
        attr_map = {}
        for n in op.attr_names:
            attr_map[n] = op.attr(n)

        return attr_map

    def init_case(self):
        self.feed_data = dict()
        for i in range(len(self.feed_names)):
            # check no repeat variable
            self.assertNotIn(
                self.feed_names[i],
                self.feed_data,
133 134
                msg="Repeat feed name: " + self.feed_names[i],
            )
135 136 137 138 139 140 141 142 143

            dtype = self.paddleddtype2nptype(self.feed_dtypes[i])
            # random int type data should not limited to [0, 1]
            high = 1 if ("int" not in dtype) else self.feed_shapes[i][0]

            # the paddle's feed list need dict not list
            self.feed_data[self.feed_names[i]] = self.random(
                self.eliminate_unkown_shape(self.feed_shapes[i]),
                dtype,
144 145
                high=high,
            )
146 147 148 149

    def load_paddle_program(self):
        self.exe = paddle.static.Executor(self.place)

150 151 152 153 154 155 156 157 158 159
        [
            self.inference_program,
            self.feed_names,
            self.fetch_targets,
        ] = paddle.fluid.io.load_inference_model(
            dirname=self.model_dir,
            executor=self.exe,
            model_filename=self.model_filename,
            params_filename=self.params_filename,
        )
160 161 162 163 164

        self.param_vars = paddle.load(
            self.model_dir,
            model_filename=self.model_filename,
            params_filename=self.params_filename,
165 166
            return_numpy=True,
        )
167 168 169 170

        logger.debug(msg="Program:\n{}".format(self.inference_program))
        logger.debug(msg="Param List: {}".format(self.param_vars.keys()))
        logger.debug(msg="Feed List: {}".format(self.feed_names))
171 172 173 174 175
        logger.debug(
            msg="Fetch List: {}".format(
                [var.name for var in self.fetch_targets]
            )
        )
176 177 178 179 180 181 182 183 184 185 186 187

        self.feed_shapes = []
        self.feed_dtypes = []

        for var in self.inference_program.list_vars():
            if var.name in self.feed_names:
                self.feed_shapes.append(var.shape)
                self.feed_dtypes.append(var.dtype)

        self.assertEqual(
            len(self.feed_names),
            len(self.feed_shapes),
188 189
            msg="Cannot found some feed var in program!",
        )
190 191 192 193 194 195

    def build_paddle_program(self, target):
        self.paddle_outputs = self.exe.run(
            self.inference_program,
            feed=self.feed_data,
            fetch_list=self.fetch_targets,
196 197
            return_numpy=True,
        )
198 199 200 201 202 203
        logger.debug("Paddle Result:\n{}".format(self.paddle_outputs))

    def build_cinn_program(self, target):
        self.assertEqual(
            1,
            self.inference_program.num_blocks,
204 205
            msg="CINN only support single block now",
        )
206 207 208 209 210 211 212 213

        feed_with_param = list()

        convertor = PaddleModelConvertor(target)
        for i in range(len(self.feed_names)):
            convertor.create_input(
                dtype=self.paddleddtype2nptype(self.feed_dtypes[i]),
                shape=self.feed_data[self.feed_names[i]].shape,
214 215
                name=self.feed_names[i],
            )
216 217 218 219 220 221
            feed_with_param.append(self.feed_names[i])

        for param_name, param_value in self.param_vars.items():
            convertor.create_input(
                dtype=str(param_value.dtype),
                shape=param_value.shape,
222 223
                name=param_name,
            )
224 225 226 227 228
            feed_with_param.append(param_name)

        for op in self.inference_program.global_block().ops:
            if op.desc.type() == "feed" or op.desc.type() == "fetch":
                continue
229 230 231 232 233 234
            convertor.append_op(
                op.desc.type(),
                op.desc.inputs(),
                op.desc.outputs(),
                self.get_paddle_op_attrs(op),
            )
235 236 237 238 239

        prog = convertor()

        # get cinn input list
        inputs = prog.get_inputs()
240 241 242
        logger.debug(
            "CINN Input List: {}".format([var.name() for var in inputs])
        )
243 244 245
        self.assertEqual(
            len(feed_with_param),
            len(inputs),
246 247
            msg="The paddle's input list not equal to cinn's input list!",
        )
248 249 250 251 252 253 254 255 256 257 258 259

        # map the name the variable
        input_dict = {var.name(): var for var in inputs}

        cinn_inputs = []
        cinn_feed_datas = []
        for name in feed_with_param:
            cinn_name = convertor.get_cinn_name(name)

            self.assertIn(
                cinn_name,
                input_dict,
260 261 262 263 264
                msg="Cannot find variable "
                + cinn_name
                + " in cinn program's input, which are "
                + str(input_dict.items()),
            )
265 266 267 268 269 270 271 272
            cinn_inputs.append(input_dict[cinn_name])

            if name in self.feed_data:
                cinn_feed_datas.append(self.feed_data[name])
            else:
                self.assertIn(
                    name,
                    self.param_vars,
273 274
                    msg="The input variable should in feed list or parameter list",
                )
275 276 277 278 279 280 281 282 283
                cinn_feed_datas.append(self.param_vars[name])

        # get cinn output list
        fetch_names = {var.name for var in self.fetch_targets}
        output_dict = convertor.get_fetch_list(fetch_names)
        cinn_output = [output_dict[var.name] for var in self.fetch_targets]

        # run and get result
        self.cinn_outputs = self.get_cinn_output(
284 285
            prog, target, cinn_inputs, cinn_feed_datas, cinn_output, passes=[]
        )
286 287 288 289

        logger.debug("CINN Result:\n{}".format(self.cinn_outputs))

    def test_check_results(self):
6
6clc 已提交
290 291
        # TODO(6clc): There is a random accuracy problem,
        #             temporarily adjust max_absolute_error from 1e-6 to 1e-3
292 293 294
        self.check_outputs_and_grads(
            max_relative_error=1e-2, max_absolute_error=1e-3
        )
295 296 297 298 299 300 301


if __name__ == "__main__":
    tester = unittest.defaultTestLoader.loadTestsFromTestCase(TestPaddleModel)
    test_runer = unittest.TextTestRunner()
    res = test_runer.run(tester)
    sys.exit(not res.wasSuccessful())