test_gaussian_random_op.py 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#!/usr/bin/env python3

# Copyright (c) 2021 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17 18 19
import cinn
from cinn.common import *
from cinn.frontend import *
20 21
from op_test import OpTest, OpTestTool
from op_test_helper import TestCaseHelper
22

23 24 25
import paddle


26 27 28
@OpTestTool.skip_if(
    not is_compiled_with_cuda(), "x86 test will be skipped due to timeout."
)
29 30 31 32 33 34 35 36 37 38
class TestGaussianRandomOp(OpTest):
    def setUp(self):
        # print(f"\n{self.__class__.__name__}: {self.case}")
        pass

    def build_paddle_program(self, target):
        out = paddle.tensor.random.gaussian(
            shape=self.case["shape"],
            mean=self.case["mean"],
            std=self.case["std"],
39 40
            dtype=self.case["dtype"],
        )
41 42 43 44
        self.paddle_outputs = [out]

    def build_cinn_program(self, target):
        builder = NetBuilder("gaussian_random")
45 46 47 48 49 50 51
        out = builder.gaussian_random(
            self.case["shape"],
            self.case["mean"],
            self.case["std"],
            self.case["seed"],
            self.case["dtype"],
        )
52 53 54 55 56 57 58 59 60 61
        prog = builder.build()
        res = self.get_cinn_output(prog, target, [], [], [out], passes=[])
        self.cinn_outputs = res

    def test_check_results(self):
        # Due to the different random number generation numbers implemented
        # in the specific implementation, the random number results generated
        # by CINN and Paddle are not the same, but they all conform to the
        # Uniform distribution.
        self.check_outputs_and_grads(
62 63
            max_relative_error=10000, max_absolute_error=10000
        )
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166


class TestGaussianRandomOpShape(TestCaseHelper):
    def init_attrs(self):
        self.class_name = "TestGaussianRandomOpCase"
        self.cls = TestGaussianRandomOp
        self.inputs = [
            {
                "shape": [1],
            },
            {
                "shape": [1024],
            },
            {
                "shape": [512, 256],
            },
            {
                "shape": [128, 64, 32],
            },
            {
                "shape": [16, 8, 4, 2],
            },
            {
                "shape": [16, 8, 4, 2, 1],
            },
        ]
        self.dtypes = [
            {
                "dtype": "float32",
            },
        ]
        self.attrs = [
            {
                "mean": 0.0,
                "std": 0.0,
                "seed": 1234,
            },
        ]


class TestGaussianRandomOpDtype(TestCaseHelper):
    def init_attrs(self):
        self.class_name = "TestGaussianRandomOpCase"
        self.cls = TestGaussianRandomOp
        self.inputs = [
            {
                "shape": [1024],
            },
        ]
        self.dtypes = [
            {
                "dtype": "float32",
            },
            {
                "dtype": "float64",
            },
        ]
        self.attrs = [
            {
                "mean": 0.0,
                "std": 0.0,
                "seed": 1234,
            },
        ]


class TestGaussianRandomOpAttr(TestCaseHelper):
    def init_attrs(self):
        self.class_name = "TestGaussianRandomOpCase"
        self.cls = TestGaussianRandomOp
        self.inputs = [
            {
                "shape": [1024],
            },
        ]
        self.dtypes = [
            {
                "dtype": "float32",
            },
        ]
        self.attrs = [
            {
                "mean": 1.0,
                "std": 0.0,
                "seed": 1,
            },
            {
                "mean": 0.0,
                "std": 1.0,
                "seed": 2,
            },
            {
                "mean": 1.0,
                "std": 1.0,
                "seed": 3,
            },
        ]


if __name__ == "__main__":
    TestGaussianRandomOpShape().run()
    TestGaussianRandomOpDtype().run()
    TestGaussianRandomOpAttr().run()