fused_token_prune_op.cu 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <limits>

#ifdef __NVCC__
#include <cub/cub.cuh>
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include "paddle/phi/backends/gpu/gpu_launch_config.h"

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/fused_token_prune_op.cu.h"

namespace paddle {
namespace operators {

using framework::Tensor;

template <typename T>
struct AttnMaskFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
    return b >= 0 ? a : 0;
  }
};

__global__ void FillIndex(int64_t* indices, int num_raws, int num_cols) {
  int num_threads = num_raws * num_cols;
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  int stride = blockDim.x * gridDim.x;

  for (; tid < num_threads; tid += stride) {
    int col = tid % num_cols;
    indices[tid] = (int64_t)col;
  }
}

template <typename T>
__global__ void TakeAlongAxis(const T* src,
                              T* dst,
                              int64_t* indices,
                              int num_raws,
                              int src_num_cols,
                              int dst_num_cols,
                              int num_elements) {
  int num_threads = num_raws * dst_num_cols;
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  int stride = blockDim.x * gridDim.x;

  for (; tid < num_threads; tid += stride) {
    int raw = tid / dst_num_cols;
    int col = tid % dst_num_cols;
    for (int i = 0; i < num_elements; ++i) {
      dst[tid * num_elements + i] =
          *(src + (raw * src_num_cols + indices[tid]) * num_elements + i);
    }
  }
}

template <typename T>
__global__ void MaximumFirst(T* mat, int num_raws, int num_cols, T max_value) {
  int num_threads = num_raws;
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;

  for (; tid < num_threads; tid += stride) {
    mat[tid * num_cols] = max_value;
  }
}

template <typename T>
class FusedTokenPruneOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto& dev_ctx = context.cuda_device_context();
    // Inouts
    const Tensor* attn = context.Input<Tensor>("Attn");
    const Tensor* x = context.Input<Tensor>("X");
    const Tensor* mask = context.Input<Tensor>("Mask");
    const Tensor* new_mask = context.Input<Tensor>("NewMask");

    // Input dims
    auto attn_dims = attn->dims();
    auto x_dims = x->dims();
    auto new_mask_dims = new_mask->dims();

    auto bsz = attn_dims[0];
    auto num_heads = attn_dims[1];
    auto max_seq_len = attn_dims[2];
    auto c = x_dims[2];
    int slimmed_x_len = new_mask_dims[2];

    // Attrs
    const bool keep_first_token = context.Attr<bool>("keep_first_token");
    const bool keep_order = context.Attr<bool>("keep_order");

    // Outputs
    Tensor* out_slimmed_x = context.Output<Tensor>("SlimmedX");
    Tensor* slimmed_indices = context.Output<Tensor>("CLSInds");
    auto* out_slimmed_x_data =
        out_slimmed_x->mutable_data<T>(context.GetPlace());
    auto* slimmed_indices_data =
        slimmed_indices->mutable_data<int64_t>(context.GetPlace());

    // Intermediate variable
    Tensor attn_tmp;
    auto* attn_tmp_data =
        attn_tmp.mutable_data<T>(attn_dims, context.GetPlace());
    Tensor attn_accu;
    auto* attn_accu_data =
        attn_accu.mutable_data<T>({bsz, max_seq_len}, context.GetPlace());
    Tensor attn_accu_indices;
    auto* attn_accu_indices_data = attn_accu_indices.mutable_data<int64_t>(
        {bsz, max_seq_len}, context.GetPlace());
    Tensor sort_attn_accu;
    auto* sort_attn_accu_data =
        sort_attn_accu.mutable_data<T>({bsz, max_seq_len}, context.GetPlace());
    Tensor sort_attn_accu_indices;
    auto* sort_attn_accu_indices_data =
        sort_attn_accu_indices.mutable_data<int64_t>({bsz, max_seq_len},
                                                     context.GetPlace());
    Tensor temp_storage;

    // 1. Filter attn by mask
    std::vector<const Tensor*> ins;
    std::vector<Tensor*> outs;
    ins.emplace_back(attn);
    ins.emplace_back(mask);
    outs.emplace_back(&attn_tmp);
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
        dev_ctx, ins, &outs, -1, AttnMaskFunctor<T>());

    // 2. Reduce sum
    const std::vector<int64_t> reduce_dims{1, 2};
    phi::Reduce<T, kps::AddFunctor, kps::IdentityFunctor>(dev_ctx,
                                                          attn_tmp,
                                                          false,
                                                          reduce_dims,
                                                          false,
                                                          attn_accu.dtype(),
                                                          &attn_accu);
    // 3. Prepare token indices
    phi::backends::gpu::GpuLaunchConfig config =
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, bsz * max_seq_len);
    FillIndex<<<config.block_per_grid,
                config.thread_per_block,
                0,
                dev_ctx.stream()>>>(attn_accu_indices_data, bsz, max_seq_len);

    // 4. Sort token indices by attn
    if (keep_first_token) {
      T max = std::numeric_limits<T>::max();
      config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, bsz);
      MaximumFirst<T>
          <<<config.block_per_grid,
             config.thread_per_block,
             0,
             dev_ctx.stream()>>>(attn_accu_data, bsz, max_seq_len, max);
    }
    size_t temp_storage_bytes = -1;
    int num_items = bsz * max_seq_len;
    int num_segments = bsz;

    cub::CountingInputIterator<int64_t> counting_iter(0);
    cub::TransformInputIterator<int64_t,
                                SegmentOffsetIter,
                                cub::CountingInputIterator<int64_t>>
        segment_offsets_t(counting_iter, SegmentOffsetIter(max_seq_len));
    // Determine temporary device storage requirements
    PADDLE_ENFORCE_GPU_SUCCESS(
        cub::DeviceSegmentedRadixSort::SortPairsDescending(
            nullptr,
            temp_storage_bytes,
            attn_accu_data,
            sort_attn_accu_data,
            attn_accu_indices_data,
            sort_attn_accu_indices_data,
            num_items,
            num_segments,
            segment_offsets_t,
            segment_offsets_t + 1,
            0,
            sizeof(T) * 8,
            dev_ctx.stream()));
    // Allocate temporary storage
    int64_t temp_size = temp_storage_bytes;
    auto* temp_storage_data =
        temp_storage.mutable_data<uint8_t>({temp_size}, context.GetPlace());
    // Run sorting operation
    PADDLE_ENFORCE_GPU_SUCCESS(
        cub::DeviceSegmentedRadixSort::SortPairsDescending(
            temp_storage_data,
            temp_storage_bytes,
            attn_accu_data,
            sort_attn_accu_data,
            attn_accu_indices_data,
            sort_attn_accu_indices_data,
            num_items,
            num_segments,
            segment_offsets_t,
            segment_offsets_t + 1,
            0,
            sizeof(T) * 8,
            dev_ctx.stream()));
    // 5. Slice
    auto slimmed_indices_tmp =
        phi::funcs::Slice<int64_t>(dev_ctx,
                                   sort_attn_accu_indices,
                                   {1} /*axes*/,
                                   {0} /*starts*/,
                                   {slimmed_x_len} /*ends*/);
    if (keep_order) {
      // 6. reorder
      num_items = bsz * slimmed_x_len;
      temp_storage_bytes = -1;
      cub::TransformInputIterator<int64_t,
                                  SegmentOffsetIter,
                                  cub::CountingInputIterator<int64_t>>
          segment_offsets_t2(counting_iter, SegmentOffsetIter(slimmed_x_len));
      PADDLE_ENFORCE_GPU_SUCCESS(cub::DeviceSegmentedRadixSort::SortKeys(
          nullptr,
          temp_storage_bytes,
          static_cast<int64_t*>(slimmed_indices_tmp.data()),
          static_cast<int64_t*>(slimmed_indices->data()),
          num_items,
          num_segments,
          segment_offsets_t2,
          segment_offsets_t2 + 1,
          0,
          sizeof(int64_t) * 8,
          dev_ctx.stream()));
      temp_size = temp_storage_bytes;
      temp_storage.Resize({temp_size});
      temp_storage_data =
          temp_storage.mutable_data<uint8_t>(context.GetPlace());
      PADDLE_ENFORCE_GPU_SUCCESS(cub::DeviceSegmentedRadixSort::SortKeys(
          temp_storage_data,
          temp_storage_bytes,
          static_cast<int64_t*>(slimmed_indices_tmp.data()),
          static_cast<int64_t*>(slimmed_indices->data()),
          num_items,
          num_segments,
          segment_offsets_t2,
          segment_offsets_t2 + 1,
          0,
          sizeof(int64_t) * 8,
          dev_ctx.stream()));
    } else {
      framework::TensorCopy(
          slimmed_indices_tmp, context.GetPlace(), slimmed_indices);
    }
    // 7. Get slimmed X by indices
    config =
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, bsz * slimmed_x_len);
    TakeAlongAxis<T><<<config.block_per_grid,
                       config.thread_per_block,
                       0,
                       dev_ctx.stream()>>>(x->data<T>(),
                                           out_slimmed_x_data,
                                           slimmed_indices->data<int64_t>(),
                                           bsz,
                                           max_seq_len,
                                           slimmed_x_len,
                                           c);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(fused_token_prune,
                        ops::FusedTokenPruneOpCUDAKernel<float>,
                        ops::FusedTokenPruneOpCUDAKernel<double>);