attn_gemm_int8.h 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <iostream>
#include <vector>
#include "paddle/fluid/operators/fused/cublaslt.h"
#include "paddle/fluid/operators/fused/quant_dequant_kernel.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
class AttnMatmulINT8 {
 public:
  AttnMatmulINT8(
      const phi::GPUContext& dev_ctx, int m, int n, int k, bool compute_bias)
      : dev_ctx_(dev_ctx), m_(m), n_(n), k_(k), compute_bias_(compute_bias) {
    auto helper = std::make_shared<CublasLtHelper>(m, k, n);
    helpers_.emplace_back(helper);
  }
  ~AttnMatmulINT8() {}

  // This function is used to execute GEMM, with input and output's types are
  // both T.
  void ComputeForward(const framework::Tensor* weight,
                      const framework::Tensor* input,
                      framework::Tensor* input_tmp,
                      const framework::Tensor* bias,
                      framework::Tensor* output,
                      framework::Tensor* output_tmp,
                      framework::Tensor* bias_out,
                      const float quant_in_scale,
                      const framework::Tensor* dequant_out_scale,
                      const int quant_out_scale_offset,
                      const int quant_round_type = 1,
                      const float quant_max_bound = 127.0,
                      const float quant_min_bound = -127.0) {
    quantize_kernel_launcher<T>(input->data<T>(),
                                input_tmp->data<int8_t>(),
                                quant_in_scale,
                                m_,
                                k_,
                                quant_round_type,
                                quant_max_bound,
                                quant_min_bound,
                                dev_ctx_.stream());

    helpers_[0]->GEMM(input_tmp->data<int8_t>(),
                      weight->data<int8_t>(),
                      output_tmp->data<int32_t>(),
                      dev_ctx_.stream());

    dequantize_kernel_launcher<T>(output_tmp->data<int32_t>(),
                                  output->data<T>(),
                                  m_,
                                  n_,
                                  dev_ctx_.stream(),
                                  quant_in_scale,
                                  dequant_out_scale->data<float>(),
                                  quant_out_scale_offset);

    if (compute_bias_) {
      // bias_out = output + bias
      std::vector<const framework::Tensor*> ins = {output, bias};
      std::vector<framework::Tensor*> outs = {bias_out};
      phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>(
          dev_ctx_, ins, &outs, -1, phi::funcs::AddFunctor<T>());
      PADDLE_ENFORCE_EQ(cudaGetLastError(),
                        cudaSuccess,
                        platform::errors::Fatal(
                            "cuda error occured after computing bias. "
                            "But it does not mean this error is caused by "
                            "bias computing"));
    }
  }

  // This function is used to execute GEMM, with input and output's types are
  // both INT8.
  void ComputeForwardINT8ToINT8(const framework::Tensor* weight,
                                framework::Tensor* input,
                                const framework::Tensor* bias,
                                framework::Tensor* output,
                                framework::Tensor* bias_out) {
    helpers_[0]->GEMM(input->data<int8_t>(),
                      weight->data<int8_t>(),
                      output->data<int32_t>(),
                      dev_ctx_.stream());
  }

  // This function is used to execute GEMM, with input and output's types are
  // INT8 and T.
  void ComputeForwardINT8ToT(const framework::Tensor* weight,
                             const float quant_in_scale,
                             framework::Tensor* input,
                             const framework::Tensor* bias,
                             framework::Tensor* output,
                             framework::Tensor* output_tmp,
                             framework::Tensor* bias_out,
                             const framework::Tensor* dequant_out_scale,
                             const int quant_out_scale_offset) {
    helpers_[0]->GEMM(input->data<int8_t>(),
                      weight->data<int8_t>(),
                      output_tmp->data<int32_t>(),
                      dev_ctx_.stream());

    dequantize_kernel_launcher<T>(output_tmp->data<int32_t>(),
                                  output->data<T>(),
                                  m_,
                                  n_,
                                  dev_ctx_.stream(),
                                  quant_in_scale,
                                  dequant_out_scale->data<float>(),
                                  quant_out_scale_offset);

    if (compute_bias_) {
      // bias_out = output + bias
      std::vector<const framework::Tensor*> ins = {output, bias};
      std::vector<framework::Tensor*> outs = {bias_out};
      phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>(
          dev_ctx_, ins, &outs, -1, phi::funcs::AddFunctor<T>());
      PADDLE_ENFORCE_EQ(cudaGetLastError(),
                        cudaSuccess,
                        platform::errors::Fatal(
                            "cuda error occured after computing bias. "
                            "But it does not mean this error is caused by "
                            "bias computing"));
    }
  }

  // This function is used to execute GEMM, with input and output's types are T
  // and INT8.
  void ComputeForwardTToINT8(const framework::Tensor* weight,
                             const float quant_in_scale,
                             const framework::Tensor* input,
                             framework::Tensor* input_tmp,
                             const framework::Tensor* bias,
                             framework::Tensor* output,
                             framework::Tensor* bias_out,
                             const int quant_round_type = 1,
                             const float quant_max_bound = 127.0,
                             const float quant_min_bound = -127.0) {
    quantize_kernel_launcher<T>(input->data<T>(),
                                input_tmp->data<int8_t>(),
                                quant_in_scale,
                                m_,
                                k_,
                                quant_round_type,
                                quant_max_bound,
                                quant_min_bound,
                                dev_ctx_.stream());

    helpers_[0]->GEMM(input_tmp->data<int8_t>(),
                      weight->data<int8_t>(),
                      output->data<int32_t>(),
                      dev_ctx_.stream());
  }

 private:
  const phi::GPUContext& dev_ctx_;

  int m_;  // m
  int n_;  // n
  int k_;  // k

  int compute_bias_;
  std::vector<std::shared_ptr<CublasLtHelper>> helpers_;
};

}  // namespace operators
}  // namespace paddle