global_scatter_op.cu.cc 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
13
limitations under the License. */
14 15 16

#include "paddle/fluid/operators/collective/global_scatter_op.h"

17
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
18
#include "paddle/fluid/platform/collective_helper.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
20
#endif
21
#include "paddle/fluid/framework/convert_utils.h"
22 23 24

namespace paddle {
namespace operators {
25

26
template <typename T>
27 28
struct GlobalScatterFunctor<phi::GPUContext, T> {
  void operator()(const framework::ExecutionContext& ctx) {
29
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
30 31 32 33
#if NCCL_VERSION_CODE >= 2703
    auto x = ctx.Input<framework::LoDTensor>("X");
    auto local_count = ctx.Input<framework::LoDTensor>("local_count");
    auto global_count = ctx.Input<framework::LoDTensor>("global_count");
34 35 36 37
    auto local_count_type =
        framework::TransToProtoVarType(local_count->dtype());
    auto global_count_type =
        framework::TransToProtoVarType(global_count->dtype());
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    if (local_count_type != framework::proto::VarType::INT64) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Please use int64 type in local_count."));
    }
    if (global_count_type != framework::proto::VarType::INT64) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Please use int64 type in global_count."));
    }
    auto out = ctx.Output<framework::LoDTensor>("Out");
    const int64_t* cpu_local_count_data;
    const int64_t* cpu_global_count_data;
    framework::Tensor cpu_local_count;
    if (platform::is_cpu_place(local_count->place())) {
      cpu_local_count_data = local_count->data<int64_t>();
    } else {
53 54
      framework::TensorCopySync(
          *local_count, platform::CPUPlace(), &cpu_local_count);
55 56 57 58 59 60 61 62
      cpu_local_count_data = cpu_local_count.data<int64_t>();
    }
    auto global_count_len = 0;
    framework::Tensor cpu_global_count;
    if (platform::is_cpu_place(global_count->place())) {
      cpu_global_count_data = global_count->data<int64_t>();
      global_count_len = global_count->numel();
    } else {
63 64
      framework::TensorCopySync(
          *global_count, platform::CPUPlace(), &cpu_global_count);
65 66 67 68
      cpu_global_count_data = cpu_global_count.data<int64_t>();
      global_count_len = cpu_global_count.numel();
    }

69 70
    ncclDataType_t dtype =
        platform::ToNCCLDataType(framework::TransToProtoVarType(x->dtype()));
71 72 73

    int ring_id = ctx.Attr<int>("ring_id");
    PADDLE_ENFORCE_GE(
74 75
        ring_id,
        0,
76 77 78 79 80 81
        platform::errors::InvalidArgument(
            "The ring_id (%d) for global scatter op must be non-negative.",
            ring_id));

    auto place = ctx.GetPlace();
    auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
82
    gpuStream_t stream = nullptr;
83 84
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
L
Leo Chen 已提交
85
      stream = static_cast<phi::GPUContext*>(dev_ctx)->stream();
86 87 88 89 90 91 92 93 94 95 96
    } else {
      stream = comm->stream();
    }
    int nranks = comm->nranks();
    auto in_feat = x->dims()[1];
    auto n_expert = local_count->dims()[0] / nranks;
    int64_t fwd_count = 0;

    for (auto i = 0; i < global_count_len; ++i) {
      fwd_count += cpu_global_count_data[i];
    }
97
    framework::DDim out_dims = phi::make_ddim({fwd_count, in_feat});
98 99 100 101 102 103 104 105 106 107
    int64_t* expert_ptr = new int64_t[n_expert * nranks];
    expert_ptr[0] = 0;
    auto tot_experts = n_expert * nranks;
    for (auto i = 1; i < tot_experts; ++i) {
      expert_ptr[i] = expert_ptr[i - 1] + cpu_local_count_data[i - 1];
    }

    auto recv_ptr = 0;
    auto send_buf = x->data<T>();
    auto recv_buf = out->mutable_data<T>(out_dims, place);
108

109
    for (auto i = 0; i < n_expert; ++i) {
110
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
111 112 113
      for (auto j = 0; j < nranks; ++j) {
        int idx = i + j * n_expert;
        if (cpu_local_count_data[idx]) {
114
          PADDLE_ENFORCE_GPU_SUCCESS(
115 116
              platform::dynload::ncclSend(send_buf + expert_ptr[idx] * in_feat,
                                          cpu_local_count_data[idx] * in_feat,
117 118 119 120
                                          dtype,
                                          j,
                                          comm->comm(),
                                          stream));
121 122
        }
        if (cpu_global_count_data[idx]) {
123
          PADDLE_ENFORCE_GPU_SUCCESS(
124 125
              platform::dynload::ncclRecv(recv_buf + recv_ptr * in_feat,
                                          cpu_global_count_data[idx] * in_feat,
126 127 128 129
                                          dtype,
                                          j,
                                          comm->comm(),
                                          stream));
130 131 132
          recv_ptr += cpu_global_count_data[idx];
        }
      }
133
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
134 135 136 137 138 139 140 141 142 143 144 145 146
    }

#else
    PADDLE_THROW(
        platform::errors::Unavailable("NCCL version >= 2.7.3 is needed."));
#endif
#else
    PADDLE_THROW(
        platform::errors::Unavailable("PaddlePaddle should compile with GPU."));
#endif
  }
};

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
template <typename T>
struct GlobalScatterProcessGroupFunctor<phi::GPUContext, T> {
  void operator()(const framework::ExecutionContext& ctx) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#if NCCL_VERSION_CODE >= 2703
    auto x = ctx.Input<framework::LoDTensor>("X");
    auto local_count = ctx.Input<framework::LoDTensor>("local_count");
    auto global_count = ctx.Input<framework::LoDTensor>("global_count");
    auto local_count_type =
        framework::TransToProtoVarType(local_count->dtype());
    auto global_count_type =
        framework::TransToProtoVarType(global_count->dtype());
    if (local_count_type != framework::proto::VarType::INT64) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Please use int64 type in local_count."));
    }
    if (global_count_type != framework::proto::VarType::INT64) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Please use int64 type in global_count."));
    }
    auto out = ctx.Output<framework::LoDTensor>("Out");
    const int64_t* cpu_local_count_data;
    const int64_t* cpu_global_count_data;
    framework::Tensor cpu_local_count;
    if (platform::is_cpu_place(local_count->place())) {
      cpu_local_count_data = local_count->data<int64_t>();
    } else {
174 175
      framework::TensorCopySync(
          *local_count, platform::CPUPlace(), &cpu_local_count);
176 177 178 179 180 181 182 183
      cpu_local_count_data = cpu_local_count.data<int64_t>();
    }
    auto global_count_len = 0;
    framework::Tensor cpu_global_count;
    if (platform::is_cpu_place(global_count->place())) {
      cpu_global_count_data = global_count->data<int64_t>();
      global_count_len = global_count->numel();
    } else {
184 185
      framework::TensorCopySync(
          *global_count, platform::CPUPlace(), &cpu_global_count);
186 187 188 189 190 191
      cpu_global_count_data = cpu_global_count.data<int64_t>();
      global_count_len = cpu_global_count.numel();
    }

    int ring_id = ctx.Attr<int>("ring_id");
    PADDLE_ENFORCE_GE(
192 193
        ring_id,
        0,
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        platform::errors::InvalidArgument(
            "The ring_id (%d) for global scatter op must be non-negative.",
            ring_id));

    auto place = ctx.GetPlace();

    auto map = distributed::ProcessGroupMapFromGid::getInstance();
    distributed::ProcessGroup* pg = map->get(ring_id);
    int nranks = pg->GetSize();
    auto in_feat = x->dims()[1];
    auto n_expert = local_count->dims()[0] / nranks;
    int64_t fwd_count = 0;

    for (auto i = 0; i < global_count_len; ++i) {
      fwd_count += cpu_global_count_data[i];
    }
    framework::DDim out_dims = phi::make_ddim({fwd_count, in_feat});
    int64_t* expert_ptr = new int64_t[n_expert * nranks];
    expert_ptr[0] = 0;
    auto tot_experts = n_expert * nranks;
    for (auto i = 1; i < tot_experts; ++i) {
      expert_ptr[i] = expert_ptr[i - 1] + cpu_local_count_data[i - 1];
    }

    auto recv_ptr = 0;
    out->mutable_data<T>(out_dims, place);

    for (auto i = 0; i < n_expert; ++i) {
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
      for (auto j = 0; j < nranks; ++j) {
        int idx = i + j * n_expert;
        if (cpu_local_count_data[idx]) {
          phi::DenseTensor tmp = *x;
227 228 229
          pg->Send_Partial(tmp,
                           j,
                           expert_ptr[idx] * in_feat,
230 231 232
                           cpu_local_count_data[idx] * in_feat);
        }
        if (cpu_global_count_data[idx]) {
233 234 235
          pg->Recv_Partial(*out,
                           j,
                           recv_ptr * in_feat,
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
                           cpu_global_count_data[idx] * in_feat);
          recv_ptr += cpu_global_count_data[idx];
        }
      }
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
    }

#ifdef PADDLE_WITH_CUDA
    PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
#else
    PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif

#else
    PADDLE_THROW(
        platform::errors::Unavailable("NCCL version >= 2.7.3 is needed."));
#endif
#else
    PADDLE_THROW(
        platform::errors::Unavailable("PaddlePaddle should compile with GPU."));
#endif
  }
};

template <typename T>
class GlobalScatterOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const int rid = ctx.Attr<int>("ring_id");
    auto map = distributed::ProcessGroupMapFromGid::getInstance();
    if (map->has(rid)) {
      GlobalScatterProcessGroupFunctor<phi::GPUContext, T> functor_;
      functor_(ctx);
    } else {
      GlobalScatterFunctor<phi::GPUContext, T> functor_;
      functor_(ctx);
    }
  }
};

276 277 278 279 280 281
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

282 283
REGISTER_OP_CUDA_KERNEL(global_scatter,
                        ops::GlobalScatterOpCUDAKernel<float>,
284 285 286 287
                        ops::GlobalScatterOpCUDAKernel<double>,
                        ops::GlobalScatterOpCUDAKernel<int>,
                        ops::GlobalScatterOpCUDAKernel<int64_t>,
                        ops::GlobalScatterOpCUDAKernel<plat::float16>);