vision.py 3.5 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define specitial functions used in computer vision task 

from ...fluid.dygraph import layers
from .. import functional

20 21
__all__ = []

R
ruri 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

class PixelShuffle(layers.Layer):
    """
    
    PixelShuffle Layer    

    This operator rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/upscale_factor**2, H*upscale_factor, W*upscale_factor],
    or from shape [N, H, W, C] to [N, H*upscale_factor, W*upscale_factor, C/upscale_factor**2].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/upscale_factor.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

    Parameters:

        upscale_factor(int): factor to increase spatial resolution.
        data_format (str): The data format of the input and output data. An optional string from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - x: 4-D tensor with shape: (N, C, H, W) or (N, H, W, C).
        - out: 4-D tensor with shape: (N, C/upscale_factor**2, H*upscale_factor, W*upscale_factor) or (N, H*upscale_factor, W*upscale_factor, C/upscale_factor^2).


    Examples:
        .. code-block:: python
            
            import paddle
            import paddle.nn as nn
            import numpy as np

            x = np.random.randn(2, 9, 4, 4).astype(np.float32)
            x_var = paddle.to_tensor(x)
            pixel_shuffle = nn.PixelShuffle(3)
            out_var = pixel_shuffle(x_var)
            out = out_var.numpy()
            print(out.shape) 
            # (2, 1, 12, 12)

    """

    def __init__(self, upscale_factor, data_format="NCHW", name=None):
        super(PixelShuffle, self).__init__()

        if not isinstance(upscale_factor, int):
            raise TypeError("upscale factor must be int type")

        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError("Data format should be 'NCHW' or 'NHWC'."
                             "But recevie data format: {}".format(data_format))

        self._upscale_factor = upscale_factor
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return functional.pixel_shuffle(x, self._upscale_factor,
                                        self._data_format, self._name)
82 83 84 85 86 87 88 89

    def extra_repr(self):
        main_str = 'upscale_factor={}'.format(self._upscale_factor)
        if self._data_format is not 'NCHW':
            main_str += ', data_format={}'.format(self._data_format)
        if self._name is not None:
            main_str += ', name={}'.format(self._name)
        return main_str