xavier.py 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...fluid.initializer import XavierInitializer

17 18
__all__ = []

19 20

class XavierNormal(XavierInitializer):
21
    r"""
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    This class implements the Xavier weight initializer from the paper
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio, using a normal distribution.

    The mean is 0 and the standard deviation is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}


    Args:
        fan_in (float, optional): fan_in for Xavier initialization, It is
                inferred from the tensor. The default value is None.
        fan_out (float, optional): fan_out for Xavier initialization, it is
                 inferred from the tensor. The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A parameter initialized by Xavier weight, using a normal distribution.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.ones(shape=[3, 1, 2], dtype='float32')
            weight_attr = paddle.framework.ParamAttr(
                name="linear_weight",
                initializer=paddle.nn.initializer.XavierNormal())
            bias_attr = paddle.framework.ParamAttr(
                name="linear_bias",
                initializer=paddle.nn.initializer.XavierNormal())
            linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr)
            # inear.weight:  [[ 0.06910077 -0.18103665]
            #                 [-0.02546741 -1.0402188 ]]
            # linear.bias:  [-0.5012929   0.12418364]

            res = linear(data)
            # res:  [[[-0.4576595 -1.0970719]]
            #        [[-0.4576595 -1.0970719]]
            #        [[-0.4576595 -1.0970719]]]
    """

    def __init__(self, fan_in=None, fan_out=None, name=None):
        super(XavierNormal, self).__init__(
            uniform=False, fan_in=fan_in, fan_out=fan_out, seed=0)


class XavierUniform(XavierInitializer):
74
    r"""
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    This class implements the Xavier weight initializer from the paper
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

    Args:
        fan_in (float, optional): fan_in for Xavier initialization, it is
                inferred from the tensor. The default value is None.
        fan_out (float, optional): fan_out for Xavier initialization, it is
                 inferred from the tensor. The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A parameter initialized by Xavier weight, using a uniform distribution.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.ones(shape=[3, 1, 2], dtype='float32')
            weight_attr = paddle.framework.ParamAttr(
                name="linear_weight",
                initializer=paddle.nn.initializer.XavierUniform())
            bias_attr = paddle.framework.ParamAttr(
                name="linear_bias",
                initializer=paddle.nn.initializer.XavierUniform())
            linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr)
            # linear.weight:  [[-0.04229349 -1.1248565 ]
            #                  [-0.10789523 -0.5938053 ]]
            # linear.bias:  [ 1.1983747  -0.40201235]

            res = linear(data)
            # res:  [[[ 1.0481861 -2.1206741]]
            #        [[ 1.0481861 -2.1206741]]
            #        [[ 1.0481861 -2.1206741]]]
    """

    def __init__(self, fan_in=None, fan_out=None, name=None):
        super(XavierUniform, self).__init__(
            uniform=True, fan_in=fan_in, fan_out=fan_out, seed=0)