auto_parallel_data_parallel_optimization.py 23.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict
16
import numpy as np
17 18

import paddle
19
from paddle.fluid import unique_name
20
from paddle.fluid.framework import default_main_program
21
from paddle.distributed.fleet.meta_optimizers.common import OP_ROLE_KEY, OpRole
22 23 24 25 26 27 28 29 30 31
from paddle.distributed.auto_parallel.operators.common import (
    is_data_parallel_scale_op,
    is_data_parallel_reduce_op,
)
from paddle.distributed.auto_parallel.utils import (
    find_higher_order_backward_op,
    is_loss_grad_op,
    is_optimize_op,
    ring_id_to_process_group,
)
32 33 34 35
from .pass_base import PassBase, PassType, register_pass

# add new optimizers supporting rescale_grad here
__rescale_grad_supported_opts__ = [
36 37 38 39 40
    'lars_momentum',
    'sparse_momentum',
    'dgc_momentum',
    'momentum',
    'merge_momentum',
41 42
]

43 44 45
# a heuristic number
__max_stream_num_allow__ = 16

46

47 48 49 50
def numel(var):
    return np.prod(list(var.shape))


51 52 53 54
@register_pass("auto_parallel_data_parallel_optimization")
class DataParallelOptimizationPass(PassBase):
    """
    Apply Optimizations that specialized for data parallelism in Auto Parallel.
55
    1. prune grad scaling
56 57 58 59 60
    2. overlap comm and calc
    3. fuse allreduce
    """

    def __init__(self):
61
        super().__init__()
62 63 64
        # NOTE not use depence on loss and param_grads
        self.set_attr("dist_context", None)
        self.set_attr("global_rank", -1)
65
        self.set_attr("use_sharding", False)
66 67 68 69 70 71 72 73 74 75
        # {grad1: group1, grad2: group1, grad3: group2}
        # record the order for fuse grad data memory
        self._grad_name_to_group_map = OrderedDict()
        # {group1:[grad1, grad2] , group2:[grad3]}
        self._group_to_grad_name_map = OrderedDict()
        self._support_rescale_grad = False

    def _check_self(self):
        if self.get_attr("dist_context") is None:
            return False
76 77 78
        if (not isinstance(self.get_attr("global_rank"), int)) or self.get_attr(
            "global_rank"
        ) < 0:
79 80 81 82 83 84 85 86 87 88 89 90 91 92
            return False

        return True

    def _check_conflict(self, other_pass):
        return True

    def _type(self):
        return PassType.COMM_OPT

    def _apply_single_impl(self, main_program, startup_program, context):

        self.dist_context = self.get_attr("dist_context")
        self.global_rank = int(self.get_attr("global_rank"))
93
        self.use_sharding = self.get_attr("use_sharding")
94 95 96

        with paddle.static.program_guard(main_program, startup_program):
            self._analyze_program()
J
JZ-LIANG 已提交
97 98 99 100 101

            if self.is_data_parallel_applied():
                self._prune_grad_scaling()
                self._calc_comm_overlap()
                grad_group = self._fuse_allreduce()
102 103

        # self.summary(grad_group)
104 105 106 107 108 109 110 111 112 113 114 115 116

    def _prune_grad_scaling(self):

        if not self._could_be_prune():
            return

        if self._all_dp_groups_same_degree():
            self._scale_backward_initial_grad()
        else:
            self._update_opt_rescale_grad()

        self._remove_grad_scaling()

117 118 119
    def _calc_comm_overlap(self):
        if not self._could_be_overlap():
            return
120 121
        self._comms_overlap_calc()
        self._calc_wait_comms()
122 123

    def _fuse_allreduce(self):
124 125 126 127 128 129

        if not self._could_be_fuse():
            return []

        grad_group = self._group_grads()
        self._update_program(grad_group)
130

131
        return grad_group
132 133 134

    def _analyze_program(self):
        """
135
        build two maps
136 137 138 139 140 141 142 143 144
        {param_grad_name: data_parallel_group}
        {pdata_parallel_group: aram_grad_name}
        """

        block = default_main_program().global_block()
        ops = block.ops
        scaled_grads = []

        for op in ops:
145

146
            if is_data_parallel_reduce_op(op):
147
                grad_name = op.output_arg_names[0]
148 149 150 151 152 153 154
                if grad_name in self._grad_name_to_group_map:
                    continue
                assert op.has_attr(
                    "ring_id"
                ), "Unexception: comm op [{}] has NOT ring id.".format(str(op))
                group = ring_id_to_process_group(op.attr("ring_id"))

155 156 157 158 159
                assert (
                    group is not None
                ), "Unexception: data parallel group of [{}] from op [{}] is None".format(
                    grad_name, str(op)
                )
160 161 162 163 164 165 166 167 168

                self._grad_name_to_group_map[grad_name] = group

                if group not in self._group_to_grad_name_map:
                    self._group_to_grad_name_map[group] = [grad_name]
                else:
                    self._group_to_grad_name_map[group].append(grad_name)

            elif is_data_parallel_scale_op(op):
169
                grad_name = op.output_arg_names[0]
170 171 172 173
                scaled_grads.append(grad_name)

            # TODO support multiple optimizers in on network in future.
            # here we assume that the optimizer is unique in network.
174 175 176 177
            elif (
                is_optimize_op(op)
                and op.type in __rescale_grad_supported_opts__
            ):
178 179 180 181 182 183
                self._support_rescale_grad = True

        not_synchronized_grads = []
        for grad_name in scaled_grads:
            if grad_name not in self._grad_name_to_group_map:
                not_synchronized_grads.append(grad_name)
184 185 186
        assert (
            len(not_synchronized_grads) == 0
        ), "Unexception: gradients [{}] is scaled BUT NOT synchronized.".format(
187
            not_synchronized_grads
188
        )
189

J
JZ-LIANG 已提交
190 191 192
    def is_data_parallel_applied(self):
        return len(self._group_to_grad_name_map) > 0

193 194
    def _could_be_prune(self):

195
        return self.dist_context.gradient_scale and (
196 197
            self._support_rescale_grad or self._all_dp_groups_same_degree()
        )
198 199

    def _all_dp_groups_same_degree(self):
200 201 202 203 204 205 206 207 208 209 210
        return (
            len(
                set(
                    [
                        len(group.ranks)
                        for group in self._group_to_grad_name_map.keys()
                    ]
                )
            )
            == 1
        )
211 212 213 214 215 216 217 218

    def _scale_backward_initial_grad(self):

        block = default_main_program().global_block()
        dp_degree = len(list(self._group_to_grad_name_map.keys())[0].ranks)

        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
219 220
                assert op.type == 'fill_constant', (
                    "loss_grad_op must be fill_constant op, "
221
                    "but this op is {}".format(op.type)
222
                )
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / dp_degree
                op._set_attr('value', loss_scale)
                break

    def _remove_grad_scaling(self):
        block = default_main_program().global_block()

        for op_idx, op in reversed(list(enumerate(block.ops))):
            if is_data_parallel_scale_op(op):
                block._remove_op(op_idx, False)

        block._sync_with_cpp()

    def _update_opt_rescale_grad(self):

        block = default_main_program().global_block()
        scaled_grads = set()

        for idx, op in reversed(list(enumerate(block.ops))):
244 245 246 247
            if (
                is_optimize_op(op)
                and op.type in __rescale_grad_supported_opts__
            ):
248 249 250
                assert op.has_attr(
                    'rescale_grad'
                ), "Unexception: op [{}] is supported to have [rescale_grad] attribute.".format(
251 252 253 254 255 256 257
                    str(op)
                )
                assert (
                    len(op.input("Grad")) == 1
                ), "Unexception: op [{}] is supported to have only one input grad var.".format(
                    str(op)
                )
258 259 260

                grad_name = op.input("Grad")[0]
                dp_degree = len(
261 262
                    list(self._grad_name_to_group_map[grad_name].ranks)
                )
263 264 265 266 267
                scaled_grads.add(grad_name)

                rescale_grad = float(op.attr('rescale_grad')) / dp_degree
                op._set_attr('rescale_grad', rescale_grad)

268 269 270 271 272
        assert scaled_grads == set(
            self._grad_name_to_group_map.keys()
        ), "Unexception: gradients [{}] are unscaled.".format(
            set(self._grad_name_to_group_map.keys()) - scaled_grads
        )
273 274 275 276 277 278 279 280 281

    def _could_be_overlap(self):
        # NOTE current different nccl comm will use different cuda stream
        # so if there too many dp group there will be too many stream need to be
        # created and sync.
        # revise here when framework support custom stream in static mode.
        num_dp_comm_stream = len(set(self._group_to_grad_name_map.keys()))
        if num_dp_comm_stream > __max_stream_num_allow__:
            return False
282 283
        if self.use_sharding:
            return False
284 285
        return True

286
    def _comms_overlap_calc(self):
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        # TODO support InterpreterCore executor for overlap.
        # InterpreterCore has a different logic for overlapping
        # which is different from use_calc_stream
        block = default_main_program().global_block()
        ops = block.ops

        # comm wait calc to finish
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_data_parallel_reduce_op(op):
                assert op.has_attr('use_calc_stream')
                assert op.has_attr('ring_id')

                op._set_attr('use_calc_stream', False)
                ring_id = op.attr("ring_id")

302 303 304 305 306 307 308
                block._insert_op_without_sync(
                    idx,
                    type='c_wait_compute',
                    inputs={'X': []},
                    outputs={'Out': []},
                    attrs={'op_role': OpRole.Backward, 'ring_id': ring_id},
                )
309 310 311

        block._sync_with_cpp()

312
    def _calc_wait_comms(self):
313 314 315 316

        block = default_main_program().global_block()
        ops = block.ops

317 318 319 320 321 322 323 324 325 326 327
        # NOTE the naive overlap implement in static hybird parallel only sync comm stream
        # at the end of Backward phase, based on a strong constraint that
        # all communicating gradient would NOT be used after communication in Backward phase.
        # BUT this constraint will fail for scenario like Weight-Sharing and Higher-Order Differentiation,
        # where gradient will be involved in other calculation between data-parallel allreduce kernel submmited
        # into comm streams and the synchronization of comm stream at the end of Backward phase.
        # synchronization of  comm stream should add according to the usage of communicating gradients
        # to support Overlapping for Weight-Sharing and Higher-Order Differentiation.

        ring_id_to_un_sync_grad_map = {}
        op_idx_to_sync_ring_id_map = {}
328
        for group in self._group_to_grad_name_map.keys():
329 330 331 332 333 334 335 336 337 338 339 340 341
            ring_id_to_un_sync_grad_map[group.id] = []

        # analyze the where need to sync
        for i, op in enumerate(ops):
            if is_data_parallel_reduce_op(op):
                ring_id = op.attr("ring_id")
                grad_name = op.output_arg_names[0]
                ring_id_to_un_sync_grad_map[ring_id].append(grad_name)
            elif is_data_parallel_scale_op(op):
                continue
            # other ops that might use communicating grad
            else:
                for input_var_name in op.input_arg_names:
342 343 344 345
                    for (
                        ring_id,
                        unsync_grad_names,
                    ) in ring_id_to_un_sync_grad_map.items():
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
                        if input_var_name in unsync_grad_names:
                            # need to sync before op_i
                            if i in op_idx_to_sync_ring_id_map:
                                op_idx_to_sync_ring_id_map[i].append(ring_id)
                            else:
                                op_idx_to_sync_ring_id_map[i] = [ring_id]
                            # all grads in this comm stream are synced
                            ring_id_to_un_sync_grad_map[ring_id] = []

        # insert synchronization
        indices = list(op_idx_to_sync_ring_id_map.keys())
        # TODO the synchronization could be optimized
        # we should record the event of a gradient is communicating and
        # only wait for that event to be completed.
        # BUT paddle static currently not support op api for event record only, so
        # here we try to wait for all kernel in that comm stream to be finish which is not that optimized.
        for i in sorted(indices, reverse=True):
            for ring_id in op_idx_to_sync_ring_id_map[i]:

365 366 367 368 369 370 371
                block._insert_op_without_sync(
                    i,
                    type='c_wait_comm',
                    inputs={'X': []},
                    outputs={'Out': []},
                    attrs={'op_role': OpRole.Backward, 'ring_id': ring_id},
                )
372 373 374 375 376 377 378 379 380 381 382 383 384 385

    def _could_be_fuse(self):
        # TODO  support gradient fuse higher order gradient.
        # should analyse the dependencies of gradient in backward.
        if find_higher_order_backward_op(default_main_program()):
            return False
        if self.use_sharding:
            return False
        return True

    def _group_grads(self):
        """
        conditions for gradients to be grouped:
        1. group size < max_fuse_numel
386
        2. same dp group
387
        3. same dtype
388
        4. dependency: grad would NOT be used by other ops within group segment
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

        gradients inside same group would be fuse into one coalesce tensor
        """

        block = default_main_program().global_block()
        ops = block.ops

        # group individual grad vars
        # TODO consider fuse gradient for sharding reduce
        # TODO let user to set fuse_grad_size
        # emb = 50000 * h, ffn = 8 * h * h, mha = 4 * h * h
        h = 2048
        ffn_numel = 2 * (4 * h) * h
        mha_numel = 3 * h * h + h * h
        max_fuse_numel = ffn_numel + mha_numel
        grad_groups = []
        cur_group = GradientsGroup(ops, max_fuse_numel)
        grouped_grad_names = set()

        def collect_group(cur_group, grad_var, ring_id, i):
            if len(cur_group.gradients) == 0:
                cur_group = None
            elif len(cur_group.gradients) == 1:
                grouped_grad_names.remove(cur_group.gradients[0].name)
            else:
                cur_group.finalize()
                grad_groups.append(cur_group)

            new_group = GradientsGroup(ops, max_fuse_numel)
            if grad_var:
                new_group.add(grad_var, ring_id, i)
                grouped_grad_names.add(grad_var.name)
            return new_group

        def op_depend_on_group(op, group):
            vars_ = set(op.input_arg_names + op.output_arg_names)
            grad_names = set([grad.name for grad in group.gradients])
            return len(vars_.intersection(grad_names)) > 0

        for i, op in enumerate(ops):
            if is_data_parallel_reduce_op(op):
                ring_id = op.attr("ring_id")
                grad_name = op.output_arg_names[0]
                grad_var = block.var(grad_name)
                grad_numel = numel(grad_var)

                if cur_group.acceptable(grad_var, ring_id):
                    assert grad_name not in grouped_grad_names
                    grouped_grad_names.add(grad_name)
                    cur_group.add(grad_var, ring_id, i)
                else:
                    cur_group = collect_group(cur_group, grad_var, ring_id, i)
            else:
                if op_depend_on_group(op, cur_group):
                    cur_group = collect_group(cur_group, None, None, None)

        # collect last group
        collect_group(cur_group, None, None, None)

        return grad_groups

    def _update_program(self, grad_groups):

        block = default_main_program().global_block()

        remove_op_types = ['scale', 'c_allreduce_sum', 'c_wait_compute']

        for i, group in enumerate(grad_groups[::-1]):

            # create coalecse tensor
459 460 461 462 463 464
            group.coalesce_var = block.create_var(
                name=unique_name.generate('coalecse_grad_{}'.format(i)),
                dtype=group.dtype,
                persistable=False,
                stop_gradient=True,
            )
465 466 467 468

            # update allreduce & scale op
            if group.scale_op_idx != -1:
                scale_op = block.ops[group.scale_op_idx]
469 470 471 472 473 474 475 476 477
                assert (
                    scale_op.type == 'scale'
                ), "should found scale op but found {}".format(str(scale_op))
                scale_op._rename_input(
                    scale_op.input_arg_names[0], group.coalesce_var.name
                )
                scale_op._rename_output(
                    scale_op.output_arg_names[0], group.coalesce_var.name
                )
478 479

            allreduce_op = block.ops[group.allreduce_op_idx]
480 481 482 483 484 485 486 487 488 489 490
            assert (
                allreduce_op.type == 'c_allreduce_sum'
            ), "should found c_allreduce_sum op but found {}".format(
                str(allreduce_op)
            )
            allreduce_op._rename_input(
                allreduce_op.input_arg_names[0], group.coalesce_var.name
            )
            allreduce_op._rename_output(
                allreduce_op.output_arg_names[0], group.coalesce_var.name
            )
491 492

            # remvoe un-used op
493 494 495 496 497
            remove_op_indices = (
                group.remove_wait_op_indices
                + group.remove_allreduce_op_indices
                + group.remove_scale_op_indices
            )
498
            for idx in sorted(remove_op_indices, reverse=True):
499 500 501
                assert (
                    block.ops[idx].type in remove_op_types
                ), "Unexception: try to remove op {}".format(str(op))
502 503 504 505 506 507 508 509 510 511 512
                block._remove_op(idx)

            # insert coalecse op
            concated_shapes = []
            concated_ranks = []
            for grad_ in group.gradients:
                shape = grad_.shape
                concated_shapes.extend(shape)
                concated_ranks.append(len(shape))

            grad_names = [grad.name for grad in group.gradients]
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
            block._insert_op_without_sync(
                group.coalesce_op_idx,
                type="coalesce_tensor",
                inputs={"Input": grad_names},
                outputs={
                    "Output": grad_names,
                    "FusedOutput": group.coalesce_var,
                },
                attrs={
                    "copy_data": False,
                    "use_align": True,
                    "dtype": group.dtype,
                    "concated_shapes": concated_shapes,
                    "concated_ranks": concated_ranks,
                    OP_ROLE_KEY: OpRole.Backward,
                },
            )
530 531 532 533 534 535 536

        block._sync_with_cpp()
        # TODO update dist attr

    def summary(self, grad_groups=[]):
        # TODO: add logger module
        import logging
537

538 539 540 541 542 543 544 545 546 547 548 549 550
        self._logger = logging.getLogger()
        self._logger.propagate = False
        if not self._logger.handlers:
            self._logger.setLevel(logging.INFO)
            log_handler = logging.StreamHandler()
            log_format = logging.Formatter(
                '[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
            )
            log_handler.setFormatter(log_format)
            self._logger.addHandler(log_handler)

        if len(grad_groups) > 0:
            self._logger.info(
551 552 553 554
                "origin {} allreduce ops are fused into {} coalecse allreduce ops.".format(
                    len(self._grad_name_to_group_map.keys()), len(grad_groups)
                )
            )
555 556 557 558 559
            self._logger.info("gradient fusing group are following: ")
            fused_grads = set()
            for i, group in enumerate(grad_groups):
                self._logger.info(
                    "coalecse gradient [{}] is composed by: {}".format(
560 561 562
                        i, [grad.name for grad in group.gradients]
                    )
                )
563
                fused_grads.update([grad.name for grad in group.gradients])
564 565 566
            individual_grads = set(self._grad_name_to_group_map.keys()) - set(
                fused_grads
            )
567 568
            self._logger.info(
                "the following [{}] gradients are not fused: ".format(
569 570 571
                    len(individual_grads)
                )
            )
572 573 574
            self._logger.info("individual gradient {}".format(individual_grads))


575
class GradientsGroup:
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    def __init__(self, ops, max_group_size):
        self.max_group_size = max_group_size
        self.ops = ops

        self.gradients = []
        self.numel = 0
        self.dtype = None
        self.ring_id = None
        self.coalesce_var = None
        self.coalesce_op_idx = -1
        self.allreduce_op_idx = -1
        self.scale_op_idx = -1
        self.remove_wait_op_indices = []
        self.remove_allreduce_op_indices = []
        self.remove_scale_op_indices = []

    def acceptable(self, grad_var, ring_id):
        if len(self.gradients) == 0:
            return True
        if ring_id != self.ring_id:
            return False
        if numel(grad_var) + self.numel > self.max_group_size:
            return False
        if grad_var.dtype != self.dtype:
            return False

        return True

    def add(self, grad_var, ring_id, i):
        self.gradients.append(grad_var)
        self.ring_id = ring_id
        self.dtype = grad_var.dtype
        self.numel += numel(grad_var)

        # remove auxiliary ops in non-fuse dp allreduce
        self.remove_allreduce_op_indices.append(i)

        # NOTE this pass rely on the original synchronization add in previous passes
        # (same stream or calc_wait_comm & comm_wait_calc)
        # to guarantee the correctness of comm_calc execution order.
        # so the calc_wait_comm should be keep.
        grad_op_idx = i - 1
        if i > 0 and self.ops[i - 1].type == 'c_wait_compute':
            self.remove_wait_op_indices.append(i - 1)
            grad_op_idx -= 1
        if i + 1 < len(self.ops) and is_data_parallel_scale_op(self.ops[i - 1]):
            self.remove_scale_op_indices.append(i + 1)

        if len(self.gradients) == 1:
625 626 627 628 629
            # TODO Remove this is a temporary hack for Tensor Parallel. the logic
            # for find grad_op should be more general.
            if self.ops[grad_op_idx].type == "c_allreduce_sum":
                grad_op_idx -= 1

630
            grad_op = self.ops[grad_op_idx]
631 632 633 634 635
            assert (
                grad_var.name in grad_op.output_arg_names
            ), "grad [{}] should be output of {}".format(
                grad_var.name, str(grad_op)
            )
636 637 638 639 640 641 642 643
            self.coalesce_op_idx = grad_op_idx

    def finalize(self):
        self.allreduce_op_idx = self.remove_allreduce_op_indices.pop()
        if len(self.remove_wait_op_indices) > 1:
            self.remove_wait_op_indices.pop()
        if len(self.remove_scale_op_indices) > 1:
            self.scale_op_idx = self.remove_scale_op_indices.pop()