sigmoid_op.h 2.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
D
dongzhihong 已提交
16 17
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
18 19 20 21

namespace paddle {
namespace operators {

D
dongzhihong 已提交
22 23 24 25 26
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

Q
qijun 已提交
27
template <typename Place, typename T>
D
dongzhihong 已提交
28
class SigmoidKernel : public framework::OpKernel {
29
 public:
D
dongzhihong 已提交
30
  void Compute(const framework::ExecutionContext& context) const override {
31 32
    auto input = context.Input<Tensor>(0);
    auto output = context.Output<Tensor>(0);
Q
qijun 已提交
33 34
    output->mutable_data<T>(context.GetPlace());

D
dangqingqing 已提交
35
    // The clipping is used in Paddle's raw implenmention
L
liaogang 已提交
36 37
    auto X = EigenVector<T>::Flatten(*input);
    auto Y = EigenVector<T>::Flatten(*output);
L
liaogang 已提交
38
    auto place = context.GetEigenDevice<Place>();
L
liaogang 已提交
39 40

    Y.device(place) = 1.0 / (1.0 + (-1.0 * X).exp());
41 42
  }
};
43 44 45

template <typename Place, typename T>
class SigmoidGradKernel : public OpKernel {
D
dangqingqing 已提交
46
 public:
47
  void Compute(const ExecutionContext& context) const override {
D
dangqingqing 已提交
48 49 50
    auto Y_t = context.Input<Tensor>("Y");
    auto dY_t = context.Input<Tensor>(framework::GradVarName("Y"));
    auto dX_t = context.Output<Tensor>(framework::GradVarName("X"));
51

D
dangqingqing 已提交
52
    dX_t->mutable_data<T>(context.GetPlace());
53

D
dangqingqing 已提交
54 55 56 57
    auto dX = EigenVector<T>::Flatten(*dX_t);
    auto Y = EigenVector<T>::Flatten(*Y_t);
    auto dY = EigenVector<T>::Flatten(*dY_t);
    dX.device(context.GetEigenDevice<Place>()) = dY * Y * (1. - Y);
58 59 60
  }
};

61 62
}  // namespace operators
}  // namespace paddle