test_adaptive_avg_pool2d.py 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import division

import unittest
import numpy as np

import paddle.fluid.core as core
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


def adaptive_pool2d_forward(x, output_size, data_format='NCHW',
                            pool_type="avg"):

    N = x.shape[0]
    C, H, W = [x.shape[1], x.shape[2], x.shape[3]] if data_format == 'NCHW' \
        else [x.shape[3], x.shape[1], x.shape[2]]

    if (isinstance(output_size, int) or output_size == None):
        H_out = output_size
        W_out = output_size
        output_size = [H_out, W_out]
    else:
        H_out, W_out = output_size

    if output_size[0] == None:
        output_size[0] = H
        H_out = H
    if output_size[1] == None:
        output_size[1] = W
        W_out = W

    out = np.zeros((N, C, H_out, W_out)) if data_format=='NCHW' \
        else np.zeros((N, H_out, W_out, C))

    for i in range(H_out):
        in_h_start = adaptive_start_index(i, H, output_size[0])
        in_h_end = adaptive_end_index(i, H, output_size[0])

        for j in range(W_out):
            in_w_start = adaptive_start_index(j, W, output_size[1])
            in_w_end = adaptive_end_index(j, W, output_size[1])

            if data_format == 'NCHW':
                x_masked = x[:, :, in_h_start:in_h_end, in_w_start:in_w_end]
                if pool_type == 'avg':
                    field_size = (
                        (in_h_end - in_h_start) * (in_w_end - in_w_start))
                    out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / field_size
                elif pool_type == 'max':
                    out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
            elif data_format == 'NHWC':
                x_masked = x[:, in_h_start:in_h_end, in_w_start:in_w_end, :]
                if pool_type == 'avg':
                    field_size = (
                        (in_h_end - in_h_start) * (in_w_end - in_w_start))
                    out[:, i, j, :] = np.sum(x_masked, axis=(1, 2)) / field_size
                elif pool_type == 'max':
                    out[:, i, j, :] = np.max(x_masked, axis=(1, 2))
    return out


class TestAdaptiveAvgPool2dAPI(unittest.TestCase):
    def setUp(self):
        self.x_np = np.random.random([2, 3, 7, 7]).astype("float32")
        self.res_1_np = adaptive_pool2d_forward(
            x=self.x_np, output_size=[3, 3], pool_type="avg")

        self.res_2_np = adaptive_pool2d_forward(
            x=self.x_np, output_size=5, pool_type="avg")

        self.res_3_np = adaptive_pool2d_forward(
            x=self.x_np, output_size=[2, 5], pool_type="avg")

        self.res_4_np = adaptive_pool2d_forward(
            x=self.x_np,
            output_size=[3, 3],
            pool_type="avg",
            data_format="NHWC")

        self.res_5_np = adaptive_pool2d_forward(
            x=self.x_np, output_size=[None, 3], pool_type="avg")

    def test_static_graph(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.enable_static()
113
            x = paddle.fluid.data(name="x", shape=[2, 3, 7, 7], dtype="float32")
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

            out_1 = paddle.nn.functional.adaptive_avg_pool2d(
                x=x, output_size=[3, 3])

            out_2 = paddle.nn.functional.adaptive_avg_pool2d(x=x, output_size=5)

            out_3 = paddle.nn.functional.adaptive_avg_pool2d(
                x=x, output_size=[2, 5])

            out_4 = paddle.nn.functional.adaptive_avg_pool2d(
                x=x, output_size=[3, 3], data_format="NHWC")

            out_5 = paddle.nn.functional.adaptive_avg_pool2d(
                x=x, output_size=[None, 3])

            exe = paddle.static.Executor(place=place)
            [res_1, res_2, res_3, res_4, res_5] = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_np},
                fetch_list=[out_1, out_2, out_3, out_4, out_5])

            assert np.allclose(res_1, self.res_1_np)

            assert np.allclose(res_2, self.res_2_np)

            assert np.allclose(res_3, self.res_3_np)

            assert np.allclose(res_4, self.res_4_np)

            assert np.allclose(res_5, self.res_5_np)

    def test_dynamic_graph(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.disable_static(place=place)
Z
Zhou Wei 已提交
150
            x = paddle.to_tensor(self.x_np)
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

            out_1 = paddle.nn.functional.adaptive_avg_pool2d(
                x=x, output_size=[3, 3])

            out_2 = paddle.nn.functional.adaptive_avg_pool2d(x=x, output_size=5)

            out_3 = paddle.nn.functional.adaptive_avg_pool2d(
                x=x, output_size=[2, 5])

            out_4 = paddle.nn.functional.adaptive_avg_pool2d(
                x=x, output_size=[3, 3], data_format="NHWC")

            out_5 = paddle.nn.functional.adaptive_avg_pool2d(
                x=x, output_size=[None, 3])

166 167 168
            out_6 = paddle.nn.functional.interpolate(
                x=x, mode="area", size=[2, 5])

169 170 171 172 173 174 175 176 177 178
            assert np.allclose(out_1.numpy(), self.res_1_np)

            assert np.allclose(out_2.numpy(), self.res_2_np)

            assert np.allclose(out_3.numpy(), self.res_3_np)

            assert np.allclose(out_4.numpy(), self.res_4_np)

            assert np.allclose(out_5.numpy(), self.res_5_np)

179 180
            assert np.allclose(out_6.numpy(), self.res_3_np)

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

class TestAdaptiveAvgPool2dClassAPI(unittest.TestCase):
    def setUp(self):
        self.x_np = np.random.random([2, 3, 7, 7]).astype("float32")
        self.res_1_np = adaptive_pool2d_forward(
            x=self.x_np, output_size=[3, 3], pool_type="avg")

        self.res_2_np = adaptive_pool2d_forward(
            x=self.x_np, output_size=5, pool_type="avg")

        self.res_3_np = adaptive_pool2d_forward(
            x=self.x_np, output_size=[2, 5], pool_type="avg")

        self.res_4_np = adaptive_pool2d_forward(
            x=self.x_np,
            output_size=[3, 3],
            pool_type="avg",
            data_format="NHWC")

        self.res_5_np = adaptive_pool2d_forward(
            x=self.x_np, output_size=[None, 3], pool_type="avg")

    def test_static_graph(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.enable_static()
208
            x = paddle.fluid.data(name="x", shape=[2, 3, 7, 7], dtype="float32")
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=[3, 3])
            out_1 = adaptive_avg_pool(x=x)

            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=5)
            out_2 = adaptive_avg_pool(x=x)

            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=[2, 5])
            out_3 = adaptive_avg_pool(x=x)

            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(
                output_size=[3, 3], data_format="NHWC")
            out_4 = adaptive_avg_pool(x=x)

            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(
                output_size=[None, 3])
            out_5 = adaptive_avg_pool(x=x)

            exe = paddle.static.Executor(place=place)
            [res_1, res_2, res_3, res_4, res_5] = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_np},
                fetch_list=[out_1, out_2, out_3, out_4, out_5])

            assert np.allclose(res_1, self.res_1_np)

            assert np.allclose(res_2, self.res_2_np)

            assert np.allclose(res_3, self.res_3_np)

            assert np.allclose(res_4, self.res_4_np)

            assert np.allclose(res_5, self.res_5_np)

    def test_dynamic_graph(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.disable_static(place=place)
Z
Zhou Wei 已提交
248
            x = paddle.to_tensor(self.x_np)
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=[3, 3])
            out_1 = adaptive_avg_pool(x=x)

            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=5)
            out_2 = adaptive_avg_pool(x=x)

            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=[2, 5])
            out_3 = adaptive_avg_pool(x=x)

            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(
                output_size=[3, 3], data_format="NHWC")
            out_4 = adaptive_avg_pool(x=x)

            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(
                output_size=[None, 3])
            out_5 = adaptive_avg_pool(x=x)

            assert np.allclose(out_1.numpy(), self.res_1_np)

            assert np.allclose(out_2.numpy(), self.res_2_np)

            assert np.allclose(out_3.numpy(), self.res_3_np)

            assert np.allclose(out_4.numpy(), self.res_4_np)

            assert np.allclose(out_5.numpy(), self.res_5_np)


if __name__ == '__main__':
    unittest.main()