api_impl.cc 15.6 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14

15 16
#include "paddle/fluid/inference/api/api_impl.h"

F
flame 已提交
17
#include <glog/logging.h>
18

W
Wilber 已提交
19
#include <memory>
X
Xin Pan 已提交
20 21 22
#include <sstream>
#include <string>

23
#include "paddle/fluid/framework/feed_fetch_method.h"
24
#include "paddle/fluid/inference/api/helper.h"
25
#include "paddle/fluid/platform/cpu_helper.h"
W
Wilber 已提交
26
#include "paddle/fluid/platform/place.h"
27 28 29
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
30 31

namespace paddle {
32 33 34 35 36 37 38 39 40 41
namespace {
using paddle::inference::Timer;

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace
X
Xin Pan 已提交
42

43 44 45
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
R
Ruibiao Chen 已提交
46
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
T
tensor-tang 已提交
47
      if (feeds_.size() <= static_cast<size_t>(idx)) {
48 49 50 51 52
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
R
Ruibiao Chen 已提交
53
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
T
tensor-tang 已提交
54
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
55 56 57 58 59 60 61
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
62 63
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
64
  VLOG(3) << "Predictor::init()";
65 66 67 68 69 70 71 72 73
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }

74
  // no matter with or without MKLDNN
L
luotao1 已提交
75
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
76

Y
Yan Chunwei 已提交
77
  if (config_.use_gpu) {
78 79
    PADDLE_ENFORCE_EQ(config_.use_xpu,
                      false,
80 81
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
X
Xin Pan 已提交
82
    place_ = paddle::platform::CUDAPlace(config_.device);
83 84
  } else if (config_.use_xpu) {
    place_ = paddle::platform::XPUPlace(config_.device);
W
Wilber 已提交
85 86
  } else if (config_.use_npu) {
    place_ = paddle::platform::NPUPlace(config_.device);
X
Xin Pan 已提交
87 88 89
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
90 91 92
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
93 94 95
    PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                            platform::errors::PreconditionNotMet(
                                "The sub_scope should not be nullptr."));
96
  } else {
97
    paddle::framework::InitDevices();
98
    paddle::framework::InitMemoryMethod();
99
    paddle::framework::InitDefaultKernelSignatureMap();
100 101
    scope_.reset(new paddle::framework::Scope());
  }
102

X
Xin Pan 已提交
103
  executor_.reset(new paddle::framework::Executor(place_));
104

X
Xin Pan 已提交
105 106 107 108
  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
109 110
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.model_dir);
X
Xin Pan 已提交
111 112 113 114 115 116 117
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
Y
Yan Chunwei 已提交
118
    LOG(ERROR) << "fail to load inference model from " << config_.model_dir;
X
Xin Pan 已提交
119 120
    return false;
  }
121

X
Xin Pan 已提交
122
  ctx_ = executor_->Prepare(*inference_program_, 0);
123 124
  executor_->CreateVariables(
      *inference_program_, sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
125

X
Xin Pan 已提交
126
  // Get the feed_target_names and fetch_target_names
127
  PrepareFeedFetch();
X
Xin Pan 已提交
128 129 130
  return true;
}

131
NativePaddlePredictor::~NativePaddlePredictor() {
132 133 134 135
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
136 137 138
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
139
}
140

Y
Yan Chunwei 已提交
141
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
142 143
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
F
flame 已提交
144 145 146 147 148 149 150 151 152 153
#ifndef PADDLE_ON_INFERENCE
  LOG_FIRST_N(WARNING, 5) << "The NaiveExecutor can not work properly if the "
                             "cmake flag ON_INFER is not set.";
  LOG_FIRST_N(WARNING, 5) << "Unlike the training phase, all the scopes and "
                             "variables will be reused to save the allocation "
                             "overhead.";
  LOG_FIRST_N(WARNING, 5) << "Please re-compile the inference library by "
                             "setting the cmake flag ON_INFER=ON if you are "
                             "running Paddle Inference";
#endif  // PADDLE_ON_INFERENCE
L
luotao1 已提交
154 155 156
  if (UNLIKELY(config_.cpu_math_library_num_threads() > 1)) {
    paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
  }
157
  VLOG(3) << "Predictor::predict";
X
Xin Pan 已提交
158 159 160
  Timer timer;
  timer.tic();
  // set feed variable
161 162
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
163 164 165 166 167
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
168
  VLOG(4) << "Run prepared context";
169 170
  executor_->RunPreparedContext(ctx_.get(),
                                scope,
171
                                false, /* don't create local scope each time*/
172
                                false /* don't create variable each time */);
173
  VLOG(4) << "Finish prepared context";
174 175
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
176
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
177 178
    return false;
  }
M
minqiyang 已提交
179
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
180

Y
Yan Chunwei 已提交
181 182 183
  // For some other vector like containers not cleaned after each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(scope_.get());
  tensor_array_batch_cleaner_.ResetNoTensorVars();
X
Xin Pan 已提交
184 185 186
  return true;
}

187
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone(void *stream) {
Y
Yan Chunwei 已提交
188 189
  std::lock_guard<std::mutex> lk(clone_mutex_);
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
190
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));
Y
Yan Chunwei 已提交
191 192
  // Hot fix the bug that result diff in multi-thread.
  // TODO(Superjomn) re-implement a real clone here.
193 194 195 196
  PADDLE_ENFORCE_NOT_NULL(
      dynamic_cast<NativePaddlePredictor *>(cls.get()),
      platform::errors::PreconditionNotMet(
          "Dynamic_cast from PaddlePredictor to NativePaddlePredictor failed"));
Y
Yan Chunwei 已提交
197
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(nullptr)) {
Y
Yan Chunwei 已提交
198
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
199 200
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
201
  return cls;
X
Xin Pan 已提交
202 203
}

Y
Yan Chunwei 已提交
204
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
205
                                    framework::Scope *scope) {
206
  VLOG(3) << "Predictor::set_feed";
207
  if (inputs.size() != feeds_.size()) {
208 209
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
X
Xin Pan 已提交
210 211
    return false;
  }
212 213 214 215

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

216
  for (size_t i = 0; i < inputs.size(); ++i) {
217
    auto &input = feed_tensors_[i];
218
    framework::DDim ddim = phi::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
219 220
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
221
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
X
Xin Pan 已提交
222
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
223
      input_ptr = input.mutable_data<float>(ddim, place_);
224 225
    } else if (inputs[i].dtype == PaddleDType::INT32) {
      input_ptr = input.mutable_data<int32_t>(ddim, place_);
X
Xin Pan 已提交
226 227 228 229 230
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

231 232 233 234 235 236 237
    PADDLE_ENFORCE_NOT_NULL(input_ptr,
                            platform::errors::InvalidArgument(
                                "The input_ptr should not be nullptr."));
    PADDLE_ENFORCE_NOT_NULL(
        inputs[i].data.data(),
        platform::errors::InvalidArgument(
            "The data of input tensor should not be null."));
238 239 240 241 242 243
    PADDLE_ENFORCE_EQ(
        inputs[i].data.length(),
        input.numel() * paddle::experimental::SizeOf(input.dtype()),
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor had wrong length."));

244 245
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
246 247
      std::memcpy(static_cast<void *>(input_ptr),
                  inputs[i].data.data(),
248
                  inputs[i].data.length());
249 250
    } else if (platform::is_gpu_place(place_)) {
      PADDLE_ENFORCE_EQ(
251 252
          platform::is_xpu_place(place_),
          false,
253 254
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
255
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
256 257
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
258
      auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(place_));
259
      auto dst_gpu_place = place_;
260 261 262 263 264 265
      memory::Copy(dst_gpu_place,
                   static_cast<void *>(input_ptr),
                   platform::CPUPlace(),
                   inputs[i].data.data(),
                   inputs[i].data.length(),
                   dev_ctx->stream());
266
#else
267 268
      PADDLE_THROW(platform::errors::Unavailable(
          "Not compile with CUDA, should not reach here."));
269
#endif
W
Wilber 已提交
270
    } else if (platform::is_xpu_place(place_)) {
271
#ifdef PADDLE_WITH_XPU
272
      auto dst_xpu_place = place_;
273 274 275 276
      memory::Copy(dst_xpu_place,
                   static_cast<void *>(input_ptr),
                   platform::CPUPlace(),
                   inputs[i].data.data(),
277 278 279 280
                   inputs[i].data.length());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "Not compile with XPU, should not reach here."));
W
Wilber 已提交
281 282 283 284 285 286 287
#endif
    } else {
#ifdef PADDLE_WITH_ASCEND_CL
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::NPUDeviceContext *>(pool.Get(place_));
288
      auto dst_npu_place = place_;
289 290 291 292 293 294
      memory::Copy(dst_npu_place,
                   static_cast<void *>(input_ptr),
                   platform::CPUPlace(),
                   inputs[i].data.data(),
                   inputs[i].data.length(),
                   dev_ctx->stream());
W
Wilber 已提交
295 296 297
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "Not compile with NPU, should not reach here."));
298 299 300
#endif
    }

Y
Yan Chunwei 已提交
301 302 303 304 305 306
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
307 308
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
309
      idx = feed_names_[inputs[i].name];
310
    } else {
R
Ruibiao Chen 已提交
311
      idx = PADDLE_GET_CONST(int, feeds_[i]->GetAttr("col"));
312 313
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
314 315 316
  }
  return true;
}
L
luotao1 已提交
317
template <typename T>
318
void NativePaddlePredictor::GetFetchOne(const phi::DenseTensor &fetch,
L
luotao1 已提交
319
                                        PaddleTensor *output) {
320
  // set shape.
321
  auto shape = phi::vectorize(fetch.dims());
322 323 324 325 326 327 328 329 330 331 332 333
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
L
luotao1 已提交
334 335
  }
}
X
Xin Pan 已提交
336

337 338
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
339
  VLOG(3) << "Predictor::get_fetch";
340 341
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
R
Ruibiao Chen 已提交
342
    int idx = PADDLE_GET_CONST(int, fetchs_[i]->GetAttr("col"));
343
    PADDLE_ENFORCE_EQ(
344 345
        static_cast<size_t>(idx),
        i,
346
        platform::errors::InvalidArgument(
347 348
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
349
            i));
350
    framework::FetchType &fetch_var =
351
        framework::GetFetchVariable(*scope, "fetch", idx);
352
    auto fetch = PADDLE_GET_CONST(phi::DenseTensor, fetch_var);
353
    auto type = framework::TransToProtoVarType(fetch.dtype());
L
luotao1 已提交
354
    auto output = &(outputs->at(i));
355
    output->name = fetchs_[idx]->Input("X")[0];
356
    if (type == framework::DataTypeTrait<float>::DataType()) {
L
luotao1 已提交
357 358
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
359
    } else if (type == framework::DataTypeTrait<int64_t>::DataType()) {
L
luotao1 已提交
360 361
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
362
    } else if (type == framework::DataTypeTrait<int32_t>::DataType()) {
363 364
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
X
Xin Pan 已提交
365
    } else {
366
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
Y
Yan Chunwei 已提交
367
    }
X
Xin Pan 已提交
368 369 370 371
  }
  return true;
}

372
template <>
373 374 375
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
    const NativeConfig &config) {
W
Wilber 已提交
376 377
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
378
  VLOG(3) << "create NativePaddlePredictor";
Y
Yan Chunwei 已提交
379
  if (config.use_gpu) {
S
Sylwester Fraczek 已提交
380
    // 1. GPU memory
381 382
    PADDLE_ENFORCE_GE(config.fraction_of_gpu_memory,
                      0.f,
383 384 385
                      platform::errors::InvalidArgument(
                          "fraction_of_gpu_memory in the config should be set "
                          "to range (0., 1.]"));
386 387
    PADDLE_ENFORCE_GE(config.device,
                      0,
388 389 390 391
                      platform::errors::PreconditionNotMet(
                          "Invalid device id %d, the device id should be "
                          "greater than or equal to 0.",
                          config.device));
Y
Yan Chunwei 已提交
392 393 394 395 396
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
397
                         num2str<float>(config.fraction_of_gpu_memory);
Y
Yan Chunwei 已提交
398
      flags.push_back(flag);
399
      VLOG(3) << "set flag: " << flag;
Y
Yan Chunwei 已提交
400 401
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
402
  }
403

Y
Yan Chunwei 已提交
404
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
L
liuwei1031 已提交
405
  PADDLE_ENFORCE_NOT_NULL(
406 407 408
      dynamic_cast<NativePaddlePredictor *>(predictor.get()),
      platform::errors::PreconditionNotMet(
          "Dynamic_cast from PaddlePredictor to NativePaddlePredictor failed"));
T
tensor-tang 已提交
409
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
410 411
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
412
  return predictor;
X
Xin Pan 已提交
413 414
}

Y
Yan Chunwei 已提交
415 416 417
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<NativeConfig>(
    const NativeConfig &config) {
W
Wilber 已提交
418
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
Y
Yan Chunwei 已提交
419 420 421
  return CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
}

X
Xin Pan 已提交
422
}  // namespace paddle