reduce_sig.cc 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/compat/op_utils.h"
16

17
namespace phi {
18 19 20

KernelSignature ReduceSumOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
21 22 23
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "sum_raw" KernelSignature.
24
    // And the InferMeta function(i.e. SumRawInferMeta) is accordance with
25 26 27 28 29 30
    // the "sum_raw" KernelSignature
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature("sum_raw",
                             {"X"},
                             {"dim", "keep_dim", "reduce_all", "out_dtype"},
                             {"Out"});
31
    }
32 33
    return KernelSignature(
        "sum", {"X"}, {"dim", "out_dtype", "keep_dim"}, {"Out"});
34 35 36 37 38 39
  }
  return KernelSignature("unregistered", {}, {}, {});
}

KernelSignature ReduceMeanOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
40 41 42
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "mean_raw" KernelSignature.
43
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
44
    // the "mean_raw" KernelSignature
45 46 47
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "mean_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
48
    }
49
    return KernelSignature("mean", {"X"}, {"dim", "keep_dim"}, {"Out"});
50 51 52 53
  }
  return KernelSignature("unregistered", {}, {}, {});
}

54
KernelSignature ReduceProdOpArgumentMapping(const ArgumentMappingContext& ctx) {
55 56 57 58 59 60 61 62 63 64 65 66 67
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "max_raw" KernelSignature.
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
    // the "max_raw" KernelSignature
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "prod_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("prod", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
68 69
}

70 71 72 73 74 75
KernelSignature ReduceMaxOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "max_raw" KernelSignature.
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
76
    // the "max_raw" KernelSignature
77 78 79 80 81 82 83 84 85
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "max_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("max", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
KernelSignature ReduceMinOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "min_raw" KernelSignature.
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
    // the "min_raw" KernelSignature
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "min_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("min", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
}

KernelSignature ReduceAnyOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "any_raw" KernelSignature.
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
    // the "any_raw" KernelSignature
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "any_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("any", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
}

KernelSignature ReduceAllOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "all_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("all", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
}

C
chentianyu03 已提交
130 131 132 133 134 135 136 137 138
KernelSignature ReduceSumGradOpArgumentMapping(
    const ArgumentMappingContext& ctx) {
  return KernelSignature(
      "sum_grad",
      {"X", GradVarName("Out")},
      {"dim", "keep_dim", "reduce_all", "in_dtype", "out_dtype"},
      {GradVarName("X")});
}

139 140 141 142 143 144 145 146 147 148 149 150 151
KernelSignature ReduceMeanGradOpArgumentMapping(
    const ArgumentMappingContext& ctx) {
  return KernelSignature(
      "mean_grad",
      {"X", GradVarName("Out")},
      {"dim", "keep_dim", "reduce_all", "in_dtype", "out_dtype"},
      {GradVarName("X")});
}

KernelSignature ReduceMaxGradOpArgumentMapping(
    const ArgumentMappingContext& ctx) {
  return KernelSignature(
      "max_grad",
152
      {"X", "Out", GradVarName("Out")},
153 154 155 156 157 158 159 160
      {"dim", "keep_dim", "reduce_all", "in_dtype", "out_dtype"},
      {GradVarName("X")});
}

KernelSignature ReduceMinGradOpArgumentMapping(
    const ArgumentMappingContext& ctx) {
  return KernelSignature(
      "min_grad",
161
      {"X", "Out", GradVarName("Out")},
162 163 164 165 166 167 168 169
      {"dim", "keep_dim", "reduce_all", "in_dtype", "out_dtype"},
      {GradVarName("X")});
}

KernelSignature ReduceProdGradOpArgumentMapping(
    const ArgumentMappingContext& ctx) {
  return KernelSignature(
      "prod_grad",
170
      {"X", "Out", GradVarName("Out")},
171 172 173 174
      {"dim", "keep_dim", "reduce_all", "in_dtype", "out_dtype"},
      {GradVarName("X")});
}

175
}  // namespace phi
176

177 178
PD_REGISTER_BASE_KERNEL_NAME(reduce_sum, sum);
PD_REGISTER_BASE_KERNEL_NAME(reduce_mean, mean);
179
PD_REGISTER_BASE_KERNEL_NAME(reduce_max, max);
180
PD_REGISTER_BASE_KERNEL_NAME(reduce_min, min);
181
PD_REGISTER_BASE_KERNEL_NAME(reduce_prod, prod);
182 183 184
PD_REGISTER_BASE_KERNEL_NAME(reduce_all, all);
PD_REGISTER_BASE_KERNEL_NAME(reduce_any, any);

C
chentianyu03 已提交
185
PD_REGISTER_BASE_KERNEL_NAME(reduce_sum_grad, sum_grad);
186 187 188 189
PD_REGISTER_BASE_KERNEL_NAME(reduce_mean_grad, mean_grad);
PD_REGISTER_BASE_KERNEL_NAME(reduce_prod_grad, prod_grad);
PD_REGISTER_BASE_KERNEL_NAME(reduce_max_grad, max_grad);
PD_REGISTER_BASE_KERNEL_NAME(reduce_min_grad, min_grad);
190

191 192
PD_REGISTER_ARG_MAPPING_FN(reduce_sum, phi::ReduceSumOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(reduce_mean, phi::ReduceMeanOpArgumentMapping);
193
PD_REGISTER_ARG_MAPPING_FN(reduce_prod, phi::ReduceProdOpArgumentMapping);
194
PD_REGISTER_ARG_MAPPING_FN(reduce_max, phi::ReduceMaxOpArgumentMapping);
195 196 197 198
PD_REGISTER_ARG_MAPPING_FN(reduce_min, phi::ReduceMinOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(reduce_all, phi::ReduceAllOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(reduce_any, phi::ReduceAnyOpArgumentMapping);

C
chentianyu03 已提交
199 200
PD_REGISTER_ARG_MAPPING_FN(reduce_sum_grad,
                           phi::ReduceSumGradOpArgumentMapping);
201 202 203 204 205 206 207 208
PD_REGISTER_ARG_MAPPING_FN(reduce_mean_grad,
                           phi::ReduceMeanGradOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(reduce_prod_grad,
                           phi::ReduceProdGradOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(reduce_max_grad,
                           phi::ReduceMaxGradOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(reduce_min_grad,
                           phi::ReduceMinGradOpArgumentMapping);