ThreadParameterUpdater.cpp 9.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "ThreadParameterUpdater.h"

#include "paddle/utils/Logging.h"

#include "paddle/math/SparseRowMatrix.h"
#include "paddle/utils/Thread.h"

22
DECLARE_int32(trainer_count);
23

Z
zhangjinchao01 已提交
24 25 26 27 28 29 30 31 32 33 34
namespace paddle {

SgdThreadUpdater::SgdThreadUpdater(const OptimizationConfig& optConfig)
    : config_(optConfig), numSamplesProcessed_(0) {
  // fill types
  auto types = sgdOptimizerGetTypes(optConfig, false /*inPserver*/);
  for (auto type : types) {
    addParameterType(type);
  }
}

Y
Yu Yang 已提交
35
void SgdThreadUpdater::init(const std::vector<ParameterPtr>& parameters) {
Z
zhangjinchao01 已提交
36 37 38 39 40 41 42 43 44 45 46
  ParameterUpdater::init(parameters);

  // calc max parameter id
  size_t maxId = 0;
  for (auto& para : parameters_) {
    maxId = std::max(maxId, para->getID());
  }

  optimizers_.resize(maxId + 1);
  for (auto& para : parameters_) {
    int pid = para->getID();
47 48
    optimizers_[pid].reset(sgdOptimizerCreate(config_,
                                              para->getConfig(),
Z
zhangjinchao01 已提交
49 50 51 52
                                              para->isGradSparseUpdate(),
                                              false /*inPserver*/));
    size_t numRows = para->isGradSparseUpdate() ? para->getConfig().dims(0) : 0;
    optimizers_[pid]->init(numRows, &para->getConfig());
53 54 55 56 57
    if (para->isGradSparseUpdate() && FLAGS_trainer_count == 1) {
      // For trainer_count=1, the gradient machine is NeuralNetwork, which does
      // not create parameter buf for PARAMETER_GRADIENT for sparse update in
      // Parameter::enableType(). But gradient parameter buf is still used
      // in SgdThreadUpdater. We need to explicitly create it.
58 59 60
      //
      // The AverageOptimizer::restore/apply method will use PARAMETER_GRADIENT
      // as a temp buffer.
61 62
      para->enableBufType(PARAMETER_GRADIENT);
    }
Z
zhangjinchao01 已提交
63 64 65 66 67 68 69 70 71 72
  }
}

void SgdThreadUpdater::startPass() {
  for (auto& para : parameters_) {
    int pid = para->getID();
    optimizers_[pid]->startPass();
  }
}

73
bool SgdThreadUpdater::finishPass() {
Z
zhangjinchao01 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
  catchUpWith();

  for (auto& para : parameters_) {
    int pid = para->getID();
    optimizers_[pid]->finishPass();
  }
  return true;
}

void SgdThreadUpdater::updateImpl(Parameter* para) {
  if (!para->useGpu()) return;
  SetDevice setDevice(para->getDeviceId());
  ParameterOptimizer* optimizer = optimizers_[para->getID()].get();
  optimizer->update(para->getBufs(), para->getConfig());
  if (auto callback = optimizer->needSpecialTraversal(para->getConfig())) {
    callback(para->getBufs(), para->getConfig(), -1LU);
  }

  para->setValueUpdated();
  para->clearGradient();
}

void SgdThreadUpdater::threadTraverse(
97 98 99 100
    const ParameterOptimizer::TraverseCallback& callback,
    int tid,
    size_t numThreads,
    Parameter* para) {
Z
zhangjinchao01 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
  VectorPtr* vecs = Parameter::getTlsTempBufs();
  if (para->isGradSparseUpdate()) {
    size_t height = para->getConfig().dims(0);
    size_t width = para->getConfig().dims(1);
    for (size_t i = tid; i < height; i += numThreads) {
      // setup sub bufs
      for (auto type : parameterTypes_) {
        vecs[type]->subVecFrom(*para->getBuf(type), i * width, width);
      }
      callback(vecs, para->getConfig(), i);
    }
  } else {  // dense
    // setup sub bufs
114 115
    auto interval = calcSplitArrayInterval(
        para->getSize(), (size_t)tid, numThreads, 8LU /*for avx*/);
Z
zhangjinchao01 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    for (auto type : parameterTypes_) {
      vecs[type]->subVecFrom(*para->getBuf(type), interval);
    }

    callback(vecs, para->getConfig(), -1LU);
  }
}

void SgdThreadUpdater::traverse(GetTraverseCallback getTraverseCallback) {
  bool hasCpuPara = false;
  bool hasGpuPara = false;
  for (auto& para : parameters_) {
    if (para->useGpu()) {
      hasGpuPara = true;
    } else {
      hasCpuPara = true;
    }
  }

  auto cpuTraverse = [&](int tid, size_t numThreads) {
    for (auto& para : parameters_) {
      if (auto callback = getTraverseCallback(para.get())) {
        threadTraverse(callback, tid, numThreads, para.get());
      }
    }
  };
  auto gpuTraverse = [&](int tid, size_t numThreads) {
    for (auto& para : parameters_) {
      if (para->useGpu()) {
        if (auto callback = getTraverseCallback(para.get())) {
          SetDevice setDevice(para->getDeviceId());
          callback(para->getBufs(), para->getConfig(), -1LU);
        }
      }
    }
  };

  if (hasCpuPara && hasGpuPara) {
    getGlobalSyncThreadPool()->exec(cpuTraverse, gpuTraverse);
  } else if (hasCpuPara) {
    getGlobalSyncThreadPool()->exec(cpuTraverse);
  } else if (hasGpuPara) {
158
    gpuTraverse(0, 0);
Z
zhangjinchao01 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  }
}

void SgdThreadUpdater::catchUpWith() {
  traverse([this](Parameter* para) {
    return optimizers_[para->getID()]->startCatchUpWith();
  });

  for (auto& para : parameters_) {
    int pid = para->getID();
    optimizers_[pid]->finishCatchUpWith();
  }
}

void SgdThreadUpdater::apply() {
  catchUpWith();

176 177
  traverse(
      [this](Parameter* para) { return optimizers_[para->getID()]->apply(); });
Z
zhangjinchao01 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
}

void SgdThreadUpdater::restore() {
  traverse([this](Parameter* para) {
    return optimizers_[para->getID()]->restore();
  });
}

PassType SgdThreadUpdater::startBatch(int64_t batchSize) {
  numSamplesProcessed_ += batchSize;
  for (auto& para : parameters_) {
    int pid = para->getID();
    optimizers_[pid]->startBatch(numSamplesProcessed_);
  }
  return PASS_TRAIN;
}

void SgdThreadUpdater::finishBatch(real cost) {
  getGlobalSyncThreadPool()->exec([&](int tid, size_t numThreads) {
    for (auto& para : parameters_) {
      if (para->isGradSparseUpdate()) {
        threadUpdateSparse(tid, numThreads, para.get());
      } else if (!para->useGpu()) {
        threadUpdateDense(tid, numThreads, para.get());
      }
    }
  });

  for (auto& para : parameters_) {
    int pid = para->getID();
    optimizers_[pid]->finishBatch();
  }
}

212 213 214
void SgdThreadUpdater::threadUpdateSparse(int tid,
                                          size_t numThreads,
                                          Parameter* para) {
Z
zhangjinchao01 已提交
215 216 217 218 219 220 221 222
  int pid = para->getID();
  ParameterOptimizer* optimizer = optimizers_[pid].get();
  VectorPtr* vecs = Parameter::getTlsTempBufs();

  size_t height = para->getConfig().dims(0);
  size_t width = para->getConfig().dims(1);

  if (dynamic_cast<SparseRowIdsCpuMatrix*>(
223
          para->getMat(PARAMETER_GRADIENT).get())) {
Z
zhangjinchao01 已提交
224 225
    // From MultiGradientMachine
    SparseRowIdsCpuMatrix* mainMat = dynamic_cast<SparseRowIdsCpuMatrix*>(
226
        para->getMat(PARAMETER_GRADIENT).get());
227
    std::vector<uint32_t>& sparseIds = mainMat->getIds(tid);
Z
zhangjinchao01 已提交
228 229 230 231 232 233 234 235 236

    for (auto id : sparseIds) {
      // setup sub bufs
      for (auto type : parameterTypes_) {
        vecs[type]->subVecFrom(*para->getBuf(type), id * width, width);
      }
      optimizer->update(vecs, para->getConfig(), id);
      vecs[PARAMETER_GRADIENT]->zeroMem();
    }
237
    sparseIds.clear();
Z
zhangjinchao01 已提交
238
  } else if (dynamic_cast<SparseRowCpuMatrix*>(
239
                 para->getMat(PARAMETER_GRADIENT).get())) {
Z
zhangjinchao01 已提交
240 241
    // From NeuralNetwork
    SparseRowCpuMatrix* mainMat = dynamic_cast<SparseRowCpuMatrix*>(
242
        para->getMat(PARAMETER_GRADIENT).get());
Z
zhangjinchao01 已提交
243 244 245 246

    std::vector<unsigned int>& localIndices =
        mainMat->getIndexDictHandle()->localIndices;

247 248
    auto interval =
        calcSplitArrayInterval(localIndices.size(), tid, numThreads);
Z
zhangjinchao01 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262
    for (size_t i = interval.first; i < interval.second; ++i) {
      auto id = localIndices[i];
      real* row = mainMat->getLocalRow(i);
      // setup sub bufs
      for (auto type : parameterTypes_) {
        if (type == PARAMETER_GRADIENT) {
          vecs[type]->subVecFrom(row, 0, width);
        } else {
          vecs[type]->subVecFrom(*para->getBuf(type), id * width, width);
        }
      }
      optimizer->update(vecs, para->getConfig(), id);
      vecs[PARAMETER_GRADIENT]->zeroMem();
    }
263 264
    // For numThreads > 1, MultiGradientMachine is used, which goes
    // to the above branch.
L
luotao1 已提交
265
    CHECK_EQ(numThreads, 1UL);
266
    mainMat->clearIndices();
Z
zhangjinchao01 已提交
267
  } else {
268
    auto& m = *para->getMat(PARAMETER_GRADIENT).get();
Z
zhangjinchao01 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    LOG(FATAL) << "Internal error: " << para->getName() << " "
               << typeid(m).name();
  }

  if (auto callback = optimizer->needSpecialTraversal(para->getConfig())) {
    for (size_t i = tid; i < height; i += numThreads) {
      // setup sub bufs
      for (auto type : parameterTypes_) {
        vecs[type]->subVecFrom(*para->getBuf(type), i * width, width);
      }
      callback(vecs, para->getConfig(), i);
    }
  }
}

284 285
void SgdThreadUpdater::threadUpdateDense(int tid,
                                         size_t numThreads,
Z
zhangjinchao01 已提交
286 287 288 289 290
                                         Parameter* para) {
  int pid = para->getID();
  ParameterOptimizer* optimizer = optimizers_[pid].get();
  VectorPtr* vecs = Parameter::getTlsTempBufs();

291 292
  auto interval = calcSplitArrayInterval(
      para->getSize(), (size_t)tid, numThreads, 8LU /*for avx*/);
Z
zhangjinchao01 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

  // setup sub bufs
  for (auto type : parameterTypes_) {
    vecs[type]->subVecFrom(*para->getBuf(type), interval);
  }

  // update
  optimizer->update(vecs, para->getConfig());
  vecs[PARAMETER_GRADIENT]->zeroMem();

  if (auto callback = optimizer->needSpecialTraversal(para->getConfig())) {
    callback(vecs, para->getConfig(), -1LU);
  }
}

}  // namespace paddle