tester_helper.h 15.5 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
L
luotao1 已提交
18
#include <algorithm>
T
Tao Luo 已提交
19
#include <string>
L
luotao1 已提交
20 21
#include <thread>  // NOLINT
#include <vector>
Y
Yiqun Liu 已提交
22 23 24
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
25

L
luotao1 已提交
26
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
27
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
28 29 30 31
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
32 33 34

#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
35
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
36
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
37 38
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
39
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
40 41
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
42
DEFINE_string(refer_result, "", "reference result for comparison");
L
luotao1 已提交
43 44 45 46
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
47 48
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
49 50
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
51
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
L
luotao1 已提交
52

53
DECLARE_bool(profile);
L
luotao1 已提交
54
DECLARE_int32(paddle_num_threads);
55

L
luotao1 已提交
56 57 58
namespace paddle {
namespace inference {

59
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
60 61
  const auto *analysis_config =
      reinterpret_cast<const contrib::AnalysisConfig *>(config);
62
  if (use_analysis) {
63
    LOG(INFO) << *analysis_config;
64 65
    return;
  }
66
  LOG(INFO) << analysis_config->ToNativeConfig();
67
}
Y
Yan Chunwei 已提交
68

L
luotao1 已提交
69
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
70
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
71
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
72
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
73 74
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
75
    auto &ref_out = ref_outputs[i];
76 77
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
78
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
L
luotao1 已提交
94
          EXPECT_NEAR(pdata_ref[j], pdata[j], FLAGS_accuracy);
T
tensor-tang 已提交
95 96 97
        }
        break;
      }
L
luotao1 已提交
98 99 100 101
    }
  }
}

102
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
103
    const PaddlePredictor::Config *config, bool use_analysis = true) {
104 105
  const auto *analysis_config =
      reinterpret_cast<const contrib::AnalysisConfig *>(config);
T
Tao Luo 已提交
106
  if (use_analysis) {
107
    return CreatePaddlePredictor<contrib::AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
108
  }
109 110
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
111 112
}

113
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
114

115
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
116
                                                   int *num_ops) {
117
  std::unordered_map<std::string, int> res;
118
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
119 120 121 122 123 124
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
125 126 127 128
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
129 130
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
131 132 133 134
      ++num;
    }
  }
  *num_ops = num;
135
  return *fusion_status;
T
Tao Luo 已提交
136 137
}

T
Tao Luo 已提交
138
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
139 140
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
141 142
                       std::string params_filename = "params",
                       const std::vector<std::string> *feed_names = nullptr) {
T
Tao Luo 已提交
143 144
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
145 146 147 148 149 150 151 152 153 154 155
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
    size_t len = std::accumulate(shape.begin(), shape.end(), 1,
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
      *(input_data + j) = static_cast<float>(j) / len;
    }
T
Tao Luo 已提交
181 182 183 184
  }
  (*inputs).emplace_back(input_slots);
}

185 186 187 188 189 190 191 192 193 194 195 196
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
197
void TestOneThreadPrediction(
198
    const PaddlePredictor::Config *config,
199
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
200
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
L
luotao1 已提交
201 202
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
203
  auto predictor = CreateTestPredictor(config, use_analysis);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

  // warmup run
  LOG(INFO) << "Warm up run...";
  {
    Timer warmup_timer;
    warmup_timer.tic();
    predictor->Run(inputs[0], outputs, batch_size);
    PrintTime(batch_size, 1, 1, 0, warmup_timer.toc(), 1);
    if (FLAGS_profile) {
      paddle::platform::ResetProfiler();
    }
  }

  LOG(INFO) << "Run " << num_times << " times...";
  {
    Timer run_timer;
    run_timer.tic();
Y
Yiqun Liu 已提交
221 222 223
#ifdef WITH_GPERFTOOLS
    ProfilerStart("paddle_inference.prof");
#endif
224 225 226 227
    for (int i = 0; i < num_times; i++) {
      for (size_t j = 0; j < inputs.size(); j++) {
        predictor->Run(inputs[j], outputs, batch_size);
      }
L
luotao1 已提交
228
    }
Y
Yiqun Liu 已提交
229 230 231
#ifdef WITH_GPERFTOOLS
    ProfilerStop();
#endif
N
nhzlx 已提交
232

Y
Yiqun Liu 已提交
233
    double latency = run_timer.toc() / (num_times > 1 ? num_times : 1);
N
nhzlx 已提交
234 235 236 237 238 239 240 241
    PrintTime(batch_size, num_times, 1, 0, latency, inputs.size());
    if (FLAGS_record_benchmark) {
      Benchmark benchmark;
      benchmark.SetName(FLAGS_model_name);
      benchmark.SetBatchSize(batch_size);
      benchmark.SetLatency(latency);
      benchmark.PersistToFile("benchmark_record.txt");
    }
L
luotao1 已提交
242 243 244 245
  }
}

void TestMultiThreadPrediction(
246
    const PaddlePredictor::Config *config,
247
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
248 249
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
250 251 252
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  std::vector<std::thread> threads;
253
  auto main_predictor = CreateTestPredictor(config, use_analysis);
254 255

  size_t total_time{0};
L
luotao1 已提交
256 257 258 259 260
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<PaddleTensor> outputs_tid;
261 262 263
      // To ensure the thread binding correctly,
      // please clone inside the threadpool.
      auto predictor = main_predictor->Clone();
L
luotao1 已提交
264 265 266
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
267
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
268 269
      }
#endif
T
Tao Luo 已提交
270 271 272 273 274 275 276 277 278 279

      // warmup run
      LOG(INFO) << "Running thread " << tid << ", warm up run...";
      {
        Timer warmup_timer;
        warmup_timer.tic();
        predictor->Run(inputs[0], outputs, batch_size);
        PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
        if (FLAGS_profile) {
          paddle::platform::ResetProfiler();
L
luotao1 已提交
280 281
        }
      }
282

T
Tao Luo 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
      LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
      {
        Timer timer;
        timer.tic();
        for (int i = 0; i < num_times; i++) {
          for (const auto &input : inputs) {
            ASSERT_TRUE(predictor->Run(input, &outputs_tid));
          }
        }

        auto time = timer.toc();
        total_time += time;
        PrintTime(batch_size, num_times, num_threads, tid, time / num_times,
                  inputs.size());
      }
L
luotao1 已提交
298 299 300 301 302 303 304
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

305
void TestPrediction(const PaddlePredictor::Config *config,
306
                    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
307 308
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
309
  PrintConfig(config, use_analysis);
L
luotao1 已提交
310
  if (num_threads == 1) {
T
Tao Luo 已提交
311
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
312
  } else {
T
Tao Luo 已提交
313 314
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
315 316 317
  }
}

L
luotao1 已提交
318 319 320 321 322 323 324 325 326
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
327 328 329 330
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
331 332 333 334 335 336
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
337
void CompareNativeAndAnalysis(
338
    const PaddlePredictor::Config *config,
339
    const std::vector<std::vector<PaddleTensor>> &inputs) {
340
  PrintConfig(config, true);
T
Tao Luo 已提交
341
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
342
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
343 344 345 346
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

L
luotao1 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
Y
Yu Yang 已提交
428
    if (a.type() == framework::proto::VarType::FP32) {
L
luotao1 已提交
429 430 431 432 433 434 435 436
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
Y
Yu Yang 已提交
437
    } else if (a.type() == framework::proto::VarType::INT64) {
L
luotao1 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
469 470
}  // namespace inference
}  // namespace paddle