fc_gan.py 5.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21
import errno
import math
import os

import matplotlib
import numpy

22
import paddle
23
import paddle.fluid as fluid
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

NOISE_SIZE = 100
NUM_PASS = 1000
NUM_REAL_IMGS_IN_BATCH = 121
NUM_TRAIN_TIMES_OF_DG = 3
LEARNING_RATE = 2e-5


def D(x):
    hidden = fluid.layers.fc(input=x,
                             size=200,
                             act='relu',
                             param_attr='D.w1',
                             bias_attr='D.b1')
    logits = fluid.layers.fc(input=hidden,
                             size=1,
                             act=None,
                             param_attr='D.w2',
                             bias_attr='D.b2')
    return logits


def G(x):
    hidden = fluid.layers.fc(input=x,
                             size=200,
                             act='relu',
                             param_attr='G.w1',
                             bias_attr='G.b1')
    img = fluid.layers.fc(input=hidden,
                          size=28 * 28,
                          act='tanh',
                          param_attr='G.w2',
                          bias_attr='G.b2')
    return img


def plot(gen_data):
    gen_data.resize(gen_data.shape[0], 28, 28)
    n = int(math.ceil(math.sqrt(gen_data.shape[0])))
    fig = plt.figure(figsize=(n, n))
    gs = gridspec.GridSpec(n, n)
    gs.update(wspace=0.05, hspace=0.05)

    for i, sample in enumerate(gen_data):
        ax = plt.subplot(gs[i])
        plt.axis('off')
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_aspect('equal')
        plt.imshow(sample.reshape(28, 28), cmap='Greys_r')

    return fig


def main():
    try:
        os.makedirs("./out")
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

    startup_program = fluid.Program()
    d_program = fluid.Program()
    dg_program = fluid.Program()

    with fluid.program_guard(d_program, startup_program):
        img = fluid.layers.data(name='img', shape=[784], dtype='float32')
        d_loss = fluid.layers.sigmoid_cross_entropy_with_logits(
            x=D(img),
            label=fluid.layers.data(
                name='label', shape=[1], dtype='float32'))
99
        d_loss = fluid.layers.mean(d_loss)
100 101 102 103 104 105 106 107 108 109

    with fluid.program_guard(dg_program, startup_program):
        noise = fluid.layers.data(
            name='noise', shape=[NOISE_SIZE], dtype='float32')
        g_img = G(x=noise)
        g_program = dg_program.clone()
        dg_loss = fluid.layers.sigmoid_cross_entropy_with_logits(
            x=D(g_img),
            label=fluid.layers.fill_constant_batch_size_like(
                input=noise, dtype='float32', shape=[-1, 1], value=1.0))
110
        dg_loss = fluid.layers.mean(dg_loss)
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

    opt = fluid.optimizer.Adam(learning_rate=LEARNING_RATE)

    opt.minimize(loss=d_loss, startup_program=startup_program)
    opt.minimize(
        loss=dg_loss,
        startup_program=startup_program,
        parameter_list=[
            p.name for p in g_program.global_block().all_parameters()
        ])
    exe = fluid.Executor(fluid.CPUPlace())
    exe.run(startup_program)

    num_true = NUM_REAL_IMGS_IN_BATCH
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=60000),
        batch_size=num_true)

    for pass_id in range(NUM_PASS):
        for batch_id, data in enumerate(train_reader()):
            num_true = len(data)
            n = numpy.random.uniform(
                low=-1.0, high=1.0,
                size=[num_true * NOISE_SIZE]).astype('float32').reshape(
                    [num_true, NOISE_SIZE])
            generated_img = exe.run(g_program,
                                    feed={'noise': n},
                                    fetch_list={g_img})[0]
140
            real_data = numpy.array([x[0] for x in data]).astype('float32')
141 142 143 144 145 146 147 148 149 150 151 152
            real_data = real_data.reshape(num_true, 784)
            total_data = numpy.concatenate([real_data, generated_img])
            total_label = numpy.concatenate([
                numpy.ones(
                    shape=[real_data.shape[0], 1], dtype='float32'),
                numpy.zeros(
                    shape=[real_data.shape[0], 1], dtype='float32')
            ])
            d_loss_np = exe.run(d_program,
                                feed={'img': total_data,
                                      'label': total_label},
                                fetch_list={d_loss})[0]
153
            for _ in range(NUM_TRAIN_TIMES_OF_DG):
154 155 156 157 158 159 160
                n = numpy.random.uniform(
                    low=-1.0, high=1.0,
                    size=[2 * num_true * NOISE_SIZE]).astype('float32').reshape(
                        [2 * num_true, NOISE_SIZE, 1, 1])
                dg_loss_np = exe.run(dg_program,
                                     feed={'noise': n},
                                     fetch_list={dg_loss})[0]
161 162
            print("Pass ID={0}, Batch ID={1}, D-Loss={2}, DG-Loss={3}".format(
                pass_id, batch_id, d_loss_np, dg_loss_np))
163 164 165 166 167 168 169 170 171
        # generate image each batch
        fig = plot(generated_img)
        plt.savefig(
            'out/{0}.png'.format(str(pass_id).zfill(3)), bbox_inches='tight')
        plt.close(fig)


if __name__ == '__main__':
    main()