test_detach.py 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import paddle.fluid as fluid

from paddle.fluid import FC
from paddle.fluid.dygraph import FC
from paddle.fluid.dygraph.base import to_variable

import unittest


class Test_Detach(unittest.TestCase):
    def generate_Data(self):
        data = np.array(
            [[1, 8, 3, 9], [7, 20, 9, 6], [4, 6, 8, 10]]).astype('float32')
        return data

    def no_detach_multi(self):
        data = self.generate_Data()
        with fluid.dygraph.guard():
            fc_w_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(5.0))
            fc_b_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(6.0))
            fc = FC("fc",
                    10,
                    num_flatten_dims=1,
                    param_attr=fc_w_param_attrs,
                    bias_attr=fc_b_param_attrs)
            fc1_w_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(7.0))
            fc1_b_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(8.0))
            fc1 = FC("fc",
                     1,
                     num_flatten_dims=1,
                     param_attr=fc1_w_param_attrs,
                     bias_attr=fc1_b_param_attrs)
            fc2_w_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(9.0))
            fc2_b_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(10.0))
            fc2 = FC("fc",
                     1,
                     num_flatten_dims=1,
                     param_attr=fc2_w_param_attrs,
                     bias_attr=fc2_b_param_attrs)
            data = to_variable(data)
            x = fc(data)
            x1 = fc1(x)
            x2 = fc2(x)
            loss = x1 + x2
            # print(loss, loss.shape)
            loss.backward()
            return x.gradient()

    def no_detach_single(self):
        data = self.generate_Data()
        with fluid.dygraph.guard():
            fc_w_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(5.0))
            fc_b_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(6.0))
            fc = FC("fc",
                    10,
                    num_flatten_dims=1,
                    param_attr=fc_w_param_attrs,
                    bias_attr=fc_b_param_attrs)
            fc1_w_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(7.0))
            fc1_b_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(8.0))
            fc1 = FC("fc",
                     1,
                     num_flatten_dims=1,
                     param_attr=fc1_w_param_attrs,
                     bias_attr=fc1_b_param_attrs)
            data = to_variable(data)
            x = fc(data)
            x1 = fc1(x)
            loss = x1
            # print(loss, loss.shape)
            loss.backward()
            return x.gradient()

    def detach_multi(self):
        data = self.generate_Data()
        with fluid.dygraph.guard():
            fc_w_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(5.0))
            fc_b_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(6.0))
            fc = FC("fc",
                    10,
                    num_flatten_dims=1,
                    param_attr=fc_w_param_attrs,
                    bias_attr=fc_b_param_attrs)
            fc1_w_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(7.0))
            fc1_b_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(8.0))
            fc1 = FC("fc",
                     1,
                     num_flatten_dims=1,
                     param_attr=fc1_w_param_attrs,
                     bias_attr=fc1_b_param_attrs)
            fc2_w_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(9.0))
            fc2_b_param_attrs = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(10.0))
            fc2 = FC("fc",
                     1,
                     num_flatten_dims=1,
                     param_attr=fc2_w_param_attrs,
                     bias_attr=fc2_b_param_attrs)
            data = to_variable(data)
            x = fc(data)
            x_detach = x.detach()
            x1 = fc1(x)
            x2 = fc2(x_detach)
            loss = x1 + x2
            # print(loss, loss.shape)
            loss.backward()
            return x.gradient()

    def test_NoDetachMulti_DetachMulti(self):
        array_no_detach_multi = self.no_detach_multi()
        array_detach_multi = self.detach_multi()

        assert not np.array_equal(array_no_detach_multi, array_detach_multi)

    def test_NoDetachSingle_DetachMulti(self):
        array_no_detach_single = self.no_detach_single()
        array_detach_multi = self.detach_multi()
        assert np.array_equal(array_no_detach_single, array_detach_multi)

    def test_detach_exception(self):
        x = fluid.layers.data(name="a", shape=[3, 4], dtype='float32')
        y = fluid.layers.fc(input=x, size=10, bias_attr=True)
        try:
            y_detach = y.detach()
        except Exception as e:
158 159 160 161 162
            # Here is to check
            assert type(e) == AssertionError
            assert str(
                e
            ) == 'We Only support detach in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode'
163 164 165 166


if __name__ == '__main__':
    unittest.main()