legacy_pd_op.h 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/ir/op_base.h"

namespace paddle {
namespace dialect {

#define OPNAME(op_name) "pd." #op_name

24 25 26 27
#define REIGSTER_EMPTY_OP(op_name, className)                   \
  class className : public ir::Op<className> {                  \
   public:                                                      \
    static const char *name() { return OPNAME(op_name); }       \
Z
zhangbo9674 已提交
28
    static constexpr const char **attributes_name = nullptr;    \
29 30 31 32 33 34
    static constexpr uint32_t attributes_num = 0;               \
    static void verify(const std::vector<ir::OpResult> &inputs, \
                       const std::vector<ir::Type> &outputs,    \
                       const ir::AttributeMap &attributes) {    \
      LOG(WARNING) << "This is a fake verify";                  \
    }                                                           \
Z
zhangbo9674 已提交
35
  };
36

Z
zhangbo9674 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
// TODO(zhangbo): As operators are supplemented and defined, they are gradually
// removed.
REIGSTER_EMPTY_OP(conv2d, Conv2DOp);           // To be customized: conv2d
REIGSTER_EMPTY_OP(feed, FeedOp);               // To be customized: feed
REIGSTER_EMPTY_OP(batch_norm, BatchNormOp);    // To be customized: batch_norm
REIGSTER_EMPTY_OP(batch_norm_, BatchNormOp_);  // To be customized: batch_norm_
REIGSTER_EMPTY_OP(elementwise_add,
                  ElementwiseAddOp);  // To be customized: add (elementwise_add)
REIGSTER_EMPTY_OP(pool2d, Pool2DOp);  // To be customized: pool2d
REIGSTER_EMPTY_OP(
    flatten_contiguous_range,
    FlattenContiguousRangeOp);  //  flatten (flatten_contiguous_range)
REIGSTER_EMPTY_OP(matmul_v2,
                  MatmulV2Op);  // To be customized: matmul (matmul_v2)
REIGSTER_EMPTY_OP(reshape2, Reshape2Op);  // To be customized: reshape
REIGSTER_EMPTY_OP(softmax_with_cross_entropy,
                  SoftmaxWithCrossEntropyOp);  // cross_entropy_with_softmax
                                               // (softmax_with_cross_entropy)
REIGSTER_EMPTY_OP(reduce_mean,
                  ReduceMeanOp);        // To be customized: mean (reduce_mean)
REIGSTER_EMPTY_OP(top_k_v2, TopKV2Op);  //  topk (top_k_v2)
REIGSTER_EMPTY_OP(fill_constant,
                  FillConstantOp);  // To be customized: full (fill_constant)
REIGSTER_EMPTY_OP(reduce_mean_grad,
                  ReduceMeanGradOp);  // To be customized: reduce_mean_grad
REIGSTER_EMPTY_OP(
    softmax_with_cross_entropy_grad,
    SoftmaxWithCrossEntropyGradOp);  // cross_entropy_with_softmax_grad
                                     // (softmax_with_cross_entropy_grad)
REIGSTER_EMPTY_OP(
    elementwise_add_grad,
    ElementwiseAddGradOp);  // To be customized: add_grad (elementwise_add_grad)
REIGSTER_EMPTY_OP(
    matmul_v2_grad,
    MatmulV2GradOp);  // To be customized: matmul_grad (matmul_v2_grad)
REIGSTER_EMPTY_OP(
    flatten_contiguous_range_grad,
    FlattenContiguousRangeGradOp);  //   flatten_grad
                                    //   (flatten_contiguous_range_grad)
REIGSTER_EMPTY_OP(pool2d_grad, Pool2DGradOp);  // To be customized: pool2d_grad
REIGSTER_EMPTY_OP(batch_norm_grad,
                  BatchNormGradOp);  // To be customized: batch_norm_grad
REIGSTER_EMPTY_OP(conv2d_grad, Conv2DGradOp);  // To be customized: conv2d_grad
REIGSTER_EMPTY_OP(sum, SumOp);           // To be customized: sum(reduce_sum)
REIGSTER_EMPTY_OP(fetch_v2, FetchV2Op);  // To be customized: fetch_v2
82 83 84 85 86 87 88 89 90 91 92 93 94
REIGSTER_EMPTY_OP(add, AddOp);
REIGSTER_EMPTY_OP(add_grad, AddGradOp);
REIGSTER_EMPTY_OP(matmul, MatMulOp);
REIGSTER_EMPTY_OP(matmul_grad, MatMulGradOp);
REIGSTER_EMPTY_OP(reshape, ReshapeOp);
REIGSTER_EMPTY_OP(reshape_grad, ReshapeGradOp);
REIGSTER_EMPTY_OP(mean, MeanOp);
REIGSTER_EMPTY_OP(cross_entropy_with_softmax, CrossEntropyOp);
REIGSTER_EMPTY_OP(cross_entropy_with_softmax_grad, CrossEntropyGradOp);
REIGSTER_EMPTY_OP(topk, TopKOp);
REIGSTER_EMPTY_OP(topk_grad, TopKGradOp);
REIGSTER_EMPTY_OP(full, FullOp);
REIGSTER_EMPTY_OP(add_n, AddNOp);
95 96 97

}  // namespace dialect
}  // namespace paddle