expand_as_v2_op.h 9.0 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <vector>

#include <boost/preprocessor/arithmetic/div.hpp>
#include <boost/preprocessor/arithmetic/mod.hpp>
#include <boost/preprocessor/comparison/greater.hpp>
#include <boost/preprocessor/comparison/greater_equal.hpp>
#include <boost/preprocessor/control/if.hpp>
#include <boost/preprocessor/repetition/repeat.hpp>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"

#define MAX_RANK_SUPPORTED 6

#define EXPAND_AS_TEMPLATE(z, n, data) \
  case n + 1: {                        \
    ExpandAs<n + 1>(context);          \
    break;                             \
  }
#define REP_EXPAND_AS_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_AS_TEMPLATE, ~)
#define COND(n) BOOST_PP_GREATER_EQUAL(n, BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
#define EXPAND_AS_GRAD_CASE(n)                                       \
  case n: {                                                          \
    ExpandAsBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
    break;                                                           \
  }
#define EXPAND_AS_GRAD_TEMPLATE(z, n, data) \
  BOOST_PP_IF(COND(n), EXPAND_AS_GRAD_CASE(n), )
#define REP_EXPAND_AS_GRAD_TEMPLATE(n) \
  BOOST_PP_REPEAT(n, EXPAND_AS_GRAD_TEMPLATE, ~)

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

template <typename DeviceContext, typename T>
class ExpandAsV2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto rank = context.Input<Tensor>("X")->dims().size();
    auto* target_tensor = context.Input<Tensor>("target_tensor");
    auto target_rank = target_tensor->dims().size();
    PADDLE_ENFORCE_GE(target_rank, rank,
                      platform::errors::InvalidArgument(
                          "The rank (%d) of the input 'target_tensor' for "
                          "expand_as_v2 op must be greater than or equal to "
                          "the rank (%d) of the input 'x'.",
                          target_rank, rank));
    PADDLE_ENFORCE_GE(rank, 1, platform::errors::InvalidArgument(
                                   "The rank (%d) of the input 'x' for "
                                   "expand_as_v2 op must be positive.",
                                   rank));
    PADDLE_ENFORCE_LE(target_rank, MAX_RANK_SUPPORTED,
                      platform::errors::InvalidArgument(
                          "The rank (%d) of the input 'target_tensor' for "
                          "expand_as_v2 op must be less than or equal to %d.",
                          target_rank, MAX_RANK_SUPPORTED));

    switch (target_rank) { REP_EXPAND_AS_TEMPLATE(MAX_RANK_SUPPORTED) }
  }

 protected:
  template <int Rank>
  void ExpandAs(const framework::ExecutionContext& context) const {
    auto* in0 = context.Input<Tensor>("X");
    auto in_dims = in0->dims();
    auto* target_tensor = context.Input<Tensor>("target_tensor");
    auto vec_in_dims = framework::vectorize<int>(in_dims);
    auto target_shape = framework::vectorize<int>(target_tensor->dims());
    auto diff = target_shape.size() - vec_in_dims.size();
    vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
    std::vector<int> repeat_times(vec_in_dims.size());
    for (size_t i = 0; i < vec_in_dims.size(); ++i) {
      PADDLE_ENFORCE_NE(target_shape[i], 0,
                        platform::errors::InvalidArgument(
                            "The value of target shape cannot be zero."));
      if (vec_in_dims[i] != 1) {
        PADDLE_ENFORCE_EQ(
            vec_in_dims[i], target_shape[i],
            platform::errors::InvalidArgument(
                "The value (%d) of the non-singleton dimension does not match"
                " the corresponding value (%d) in "
                "target tensor for expand_as_v2 op.",
                vec_in_dims[i], target_shape[i]));
        repeat_times[i] = 1;
      } else {
        repeat_times[i] = target_shape[i];
      }
    }
    auto* out0 = context.Output<Tensor>("Out");
    Eigen::DSizes<int, Rank> bcast_dims;
    for (size_t i = 0; i < repeat_times.size(); ++i) {
      bcast_dims[i] = repeat_times[i];
    }

    framework::DDim new_in_dims = framework::make_ddim(vec_in_dims);
    framework::DDim out_dims = framework::make_ddim(target_shape);

    out0->Resize(out_dims);
    auto x = EigenTensor<T, Rank>::From(*in0, new_in_dims);
    out0->mutable_data<T>(context.GetPlace());
    auto y = EigenTensor<T, Rank>::From(*out0, out_dims);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    y.device(place) = x.broadcast(bcast_dims);
  }
};

template <typename DeviceContext, typename T>
class ExpandAsV2GradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in0 = context.Input<Tensor>("X");
    auto* target_tensor = context.Input<Tensor>("target_tensor");
    auto x_dims = in0->dims();
    auto target_shape = target_tensor->dims();
    auto vec_in_dims = framework::vectorize<int>(x_dims);
    auto diff = target_shape.size() - vec_in_dims.size();
    vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
    std::vector<int> repeat_times(vec_in_dims.size());
    for (size_t i = 0; i < vec_in_dims.size(); ++i) {
      repeat_times[i] = target_shape[i] / vec_in_dims[i];
    }
    std::vector<int> reshape_dims_vec;
    std::vector<int> reduce_dims_vec;
    for (size_t i = 0; i < repeat_times.size(); ++i) {
      reduce_dims_vec.push_back(reshape_dims_vec.size());
      reshape_dims_vec.push_back(repeat_times[i]);
      reshape_dims_vec.push_back(vec_in_dims[i]);
    }

    int dims = reduce_dims_vec.size();
    bool just_copy = true;
    for (size_t i = 0; i < repeat_times.size(); i++) {
      if (repeat_times[i] != 1) {
        just_copy = false;
        break;
      }
    }
    // no need reduce, just copy
    if (just_copy) {
      auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
      auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
      out0->mutable_data<T>(context.GetPlace());
      framework::TensorCopy(*in0, context.GetPlace(), context.device_context(),
                            out0);
    } else {
      PADDLE_ENFORCE_GE(dims, 1,
                        platform::errors::InvalidArgument(
                            "The rank of the input 'Out@GRAD' for "
                            "expand_as_v2_grad op must be greater than or "
                            "equal to 1, but the value received is %d.",
                            dims));
      PADDLE_ENFORCE_LE(dims, MAX_RANK_SUPPORTED,
                        platform::errors::InvalidArgument(
                            "The rank of the input 'Out@GRAD' for "
                            "expand_as_v2_grad op must be less than or equal "
                            "to %d, but the value received is %d.",
                            MAX_RANK_SUPPORTED, dims));
      switch (dims) { REP_EXPAND_AS_GRAD_TEMPLATE(MAX_RANK_SUPPORTED) }
    }
  }

 protected:
  template <int Dims>
  void ExpandAsBackward(const framework::ExecutionContext& context,
                        const std::vector<int>& reshape_dims_vec,
                        const std::vector<int>& reduce_dims_vec) const {
    size_t reshape_size = reshape_dims_vec.size();
    size_t reduce_size = reduce_dims_vec.size();
    auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
    out0->mutable_data<T>(context.GetPlace());
    auto x_grad = EigenVector<T>::Flatten(*out0);
    Eigen::DSizes<int, Dims * 2> reshape_dims;
    for (size_t i = 0; i < reshape_size; ++i) {
      reshape_dims[i] = reshape_dims_vec[i];
    }
    Eigen::DSizes<int, Dims> reduce_dims;
    for (size_t i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = reduce_dims_vec[i];
    }
    auto out_grad = EigenVector<T>::Flatten(*in0);
    x_grad.device(
        *context.template device_context<DeviceContext>().eigen_device()) =
        out_grad.reshape(reshape_dims)
            .sum(reduce_dims)
            .reshape(x_grad.dimensions());
  }
};

}  // namespace operators
}  // namespace paddle