bpr_loss_op.cc 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/bpr_loss_op.h"
S
sneaxiy 已提交
16
#include <memory>
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class BprLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
27
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
28 29 30
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");

    auto x_dims = ctx->GetInputDim("X");
31
    auto label_dims = ctx->GetInputDim("Label");
32
    int rank = x_dims.size();
33 34
    PADDLE_ENFORCE_EQ(rank, label_dims.size(),
                      "Input(X) and Input(Label) shall have the same rank.");
35
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
36 37
                      framework::slice_ddim(label_dims, 0, rank - 1),
                      "Input(X) and Input(Label) shall have the same shape "
38 39 40 41 42 43 44 45 46 47 48 49 50
                      "except the last dimension.");

    auto y_dims = x_dims;
    y_dims[rank - 1] = 1;
    ctx->SetOutputDim("Y", y_dims);
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of Seq-bpr
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
51 52
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
53 54 55 56 57 58 59 60 61
  }
};

class BprLossGradientOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
62
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
63 64 65 66 67 68
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) shoudl be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) should be not null.");

    auto x_dims = ctx->GetInputDim("X");
69
    auto label_dims = ctx->GetInputDim("Label");
70 71 72 73
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
    int rank = x_dims.size();
    PADDLE_ENFORCE_EQ(dy_dims.size(), rank,
                      "Input(Y@Grad) and Input(X) should have the same rank.");
74 75
    PADDLE_ENFORCE_EQ(label_dims.size(), rank,
                      "Input(Label) and Input(X) should have the same rank.");
76
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
77 78
                      framework::slice_ddim(label_dims, 0, rank - 1),
                      "The Input(X) and Input(Label) should have the same "
79 80 81 82 83 84 85
                      "shape except the last dimension.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                      framework::slice_ddim(dy_dims, 0, rank - 1),
                      "The Input(X) and Input(Y@Grad) should have the same "
                      "shape except the last dimension.");
    PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
                      "The last dimension of Input(Y@Grad) should be 1.");
86 87
    PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
                      " the last dimension of Input(Label) should be 1.");
88 89 90 91 92 93 94 95 96
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  // Explicitly set that the data type of computation kernel of cross_entropy
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
97 98
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
99 100 101 102 103 104 105 106 107 108 109
  }
};

class BprLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), a tensor whose last dimension "
             "size is equal to the number of classes. This input is a "
             "real number.");
    AddInput(
110
        "Label",
111 112 113 114 115 116 117 118
        "(Tensor), the tensor which represents the ground truth. It has the "
        "same shape with 'X' except the last dimension. the last dimension "
        "size is 1.");
    AddOutput("Y",
              "(Tensor, default Tensor<float>), a tensor whose shape is same "
              "with 'X' except that the last dimension size is 1. It "
              "represents the sequence bpr loss.");
    AddComment(R"DOC(
119
Bayesian Personalized Ranking Loss Operator.
120

121
This operator belongs to pairwise ranking loss. Label is the desired item.
122
The loss at a given point in one session is defined as:
123 124 125
$Y[i] = -\frac{1}{N_{i}} * \sum_{j=0}^{N_{i}}\log(\sigma(X[i, Label[i]]-X[i, j]))$

Learn more details by reading paper <session-based recommendations with recurrent
126
neural networks>(https://arxiv.org/abs/1511.06939)
127 128 129 130

)DOC");
  }
};
S
sneaxiy 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

class BprLossGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("bpr_loss_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("Label", Input("Label"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
  }
};
148 149 150 151 152 153 154
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPUCtx = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(bpr_loss, ops::BprLossOp, ops::BprLossOpMaker,
S
sneaxiy 已提交
155
                  ops::BprLossGradDescMaker);
156 157 158 159 160 161
REGISTER_OPERATOR(bpr_loss_grad, ops::BprLossGradientOp);
REGISTER_OP_CPU_KERNEL(bpr_loss, ops::BprLossOpKernel<CPUCtx, float>,
                       ops::BprLossOpKernel<CPUCtx, double>);
REGISTER_OP_CPU_KERNEL(bpr_loss_grad,
                       ops::BprLossGradientOpKernel<CPUCtx, float>,
                       ops::BprLossGradientOpKernel<CPUCtx, double>);