activation_grad_kernel.cc 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/activation_grad_kernel.h"

#include "paddle/phi/backends/onednn/onednn_context.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/activation_functor.h"
22
#include "paddle/phi/kernels/funcs/onednn/onednn_reuse.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

namespace phi {

#define DEFINE_ONEDNN_ACTIVATION_GRAD_KERNEL_DEPX(name, functor_class) \
  template <typename T, typename Context>                              \
  void name##GradKernel(const Context& dev_ctx,                        \
                        const DenseTensor& x,                          \
                        const DenseTensor& dout,                       \
                        DenseTensor* dx) {                             \
    functor_class<T> functor;                                          \
    functor(dev_ctx, x, dout, 0, 0, dx);                               \
  }

#define DEFINE_ONEDNN_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX( \
    name, functor_class, attr)                             \
  template <typename T, typename Context>                  \
  void name##GradKernel(const Context& dev_ctx,            \
                        const DenseTensor& x,              \
                        const DenseTensor& dout,           \
                        float attr,                        \
                        DenseTensor* dx) {                 \
    functor_class<T> functor;                              \
    functor(dev_ctx, x, dout, attr, 0, dx);                \
  }

#define DEFINE_ONEDNN_ACTIVATION_GRAD_KERNEL_DEPOUT(name, functor_class) \
  template <typename T, typename Context>                                \
  void name##GradKernel(const Context& dev_ctx,                          \
                        const DenseTensor& out,                          \
                        const DenseTensor& dout,                         \
                        DenseTensor* dx) {                               \
    functor_class<T> functor;                                            \
    functor(dev_ctx, out, dout, 0, 0, dx);                               \
  }

#define DEFINE_ONEDNN_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPOUT( \
    name, functor_class, attr)                               \
  template <typename T, typename Context>                    \
  void name##GradKernel(const Context& dev_ctx,              \
                        const DenseTensor& out,              \
                        const DenseTensor& dout,             \
                        float attr,                          \
                        DenseTensor* dx) {                   \
    functor_class<T> functor;                                \
    functor(dev_ctx, out, dout, attr, 0, dx);                \
  }

template <typename T>
void eltwise_grad(const OneDNNContext& dev_ctx,
                  const DenseTensor& x,
                  const DenseTensor& dout,
                  float alpha,
                  float beta,
                  DenseTensor* dx,
                  dnnl::algorithm algorithm) {
  const auto& mkldnn_engine = dev_ctx.GetEngine();

  funcs::ActivationMKLDNNHandler<T> handler(
      algorithm, alpha, beta, mkldnn_engine, dev_ctx.GetPlace(), &x, &dout);

  auto src_memory_p = handler.AcquireBackwardSrcMemory(&x);
  auto diff_dst_memory_p = handler.AcquireDiffDstMemory(&dout);
  auto diff_src_memory_p = handler.AcquireDiffSrcMemory(dx);
  auto activation_backward_p = handler.AcquireBackwardPrimitive();

  auto& astream = OneDNNContext::tls().get_stream();
  activation_backward_p->execute(astream,
                                 {{DNNL_ARG_SRC, *src_memory_p},
                                  {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                  {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
  astream.wait();

  dx->set_mem_desc(diff_src_memory_p->get_desc());
}

template <typename T>
void eltwise_grad_use_out(const OneDNNContext& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& dout,
                          float alpha,
                          float beta,
                          DenseTensor* dx,
                          dnnl::algorithm algorithm) {
  const auto& mkldnn_engine = dev_ctx.GetEngine();

  funcs::ActivationMKLDNNHandler<T> handler(
      algorithm, alpha, beta, mkldnn_engine, dev_ctx.GetPlace(), &out, &dout);

  auto dst_memory_p = handler.AcquireBackwardSrcMemory(&out);
  auto diff_dst_memory_p = handler.AcquireDiffDstMemory(&dout);
  auto diff_src_memory_p = handler.AcquireDiffSrcMemory(dx);
  auto activation_backward_p = handler.AcquireBackwardPrimitive();

  auto& astream = OneDNNContext::tls().get_stream();
  activation_backward_p->execute(astream,
                                 {{DNNL_ARG_DST, *dst_memory_p},
                                  {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                  {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
  astream.wait();

  dx->set_mem_desc(diff_src_memory_p->get_desc());
}

template <typename T, dnnl::algorithm algorithm>
struct MKLDNNActivationGradFunc : public funcs::BaseActivationFunctor<T> {
  void operator()(const OneDNNContext& dev_ctx,
                  const DenseTensor& x,
                  const DenseTensor& dout,
                  float alpha,
                  float beta,
                  DenseTensor* dx) const {
    eltwise_grad<T>(dev_ctx, x, dout, alpha, beta, dx, algorithm);
  }
};

template <typename T, dnnl::algorithm algorithm>
struct MKLDNNActivationGradUseOutFunc : public funcs::BaseActivationFunctor<T> {
  void operator()(const OneDNNContext& dev_ctx,
                  const DenseTensor& out,
                  const DenseTensor& dout,
                  float alpha,
                  float beta,
                  DenseTensor* dx) const {
    eltwise_grad_use_out<T>(dev_ctx, out, dout, alpha, beta, dx, algorithm);
  }
};

150 151 152 153
template <typename T>
using AbsMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_abs>;

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
template <typename T>
using ReluMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_relu>;

template <typename T>
using SwishMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_swish>;

template <typename T>
using HardSwishMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_hardswish>;

template <typename T>
using MishMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_mish>;

template <typename T>
using SigmoidMKLDNNGradUseOutFunctor = MKLDNNActivationGradUseOutFunc<
    T,
    dnnl::algorithm::eltwise_logistic_use_dst_for_bwd>;

template <typename T>
using TanhMKLDNNGradUseOutFunctor = MKLDNNActivationGradUseOutFunc<
    T,
    dnnl::algorithm::eltwise_tanh_use_dst_for_bwd>;

template <typename T>
using SqrtMKLDNNGradUseOutFunctor = MKLDNNActivationGradUseOutFunc<
    T,
    dnnl::algorithm::eltwise_sqrt_use_dst_for_bwd>;

template <typename T>
using EluMKLDNNGradUseOutFunctor = MKLDNNActivationGradUseOutFunc<
    T,
    dnnl::algorithm::eltwise_elu_use_dst_for_bwd>;

template <typename T>
using ExpMKLDNNGradUseOutFunctor = MKLDNNActivationGradUseOutFunc<
    T,
    dnnl::algorithm::eltwise_exp_use_dst_for_bwd>;

DEFINE_ONEDNN_ACTIVATION_GRAD_KERNEL_DEPOUT(Tanh, TanhMKLDNNGradUseOutFunctor);
DEFINE_ONEDNN_ACTIVATION_GRAD_KERNEL_DEPOUT(Sqrt, SqrtMKLDNNGradUseOutFunctor);
DEFINE_ONEDNN_ACTIVATION_GRAD_KERNEL_DEPOUT(Sigmoid,
                                            SigmoidMKLDNNGradUseOutFunctor);
DEFINE_ONEDNN_ACTIVATION_GRAD_KERNEL_DEPOUT(Exp, ExpMKLDNNGradUseOutFunctor);
200
DEFINE_ONEDNN_ACTIVATION_GRAD_KERNEL_DEPOUT(Abs, AbsMKLDNNGradFunctor);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
DEFINE_ONEDNN_ACTIVATION_GRAD_KERNEL_DEPOUT(Relu, ReluMKLDNNGradFunctor);

DEFINE_ONEDNN_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(LeakyRelu,
                                                  ReluMKLDNNGradFunctor,
                                                  alpha);
DEFINE_ONEDNN_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(Mish,
                                                  MishMKLDNNGradFunctor,
                                                  threshold);
DEFINE_ONEDNN_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(Swish,
                                                  SwishMKLDNNGradFunctor,
                                                  beta);
template <typename T, typename Context>
void HardSwishGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         float threshold,
                         float scale,
                         float offset,
                         DenseTensor* dx) {
  HardSwishMKLDNNGradFunctor<T> functor;
  functor(dev_ctx, x, dout, threshold, 0, dx);
}

template <typename T, typename Context>
void EluGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& out,
                   const DenseTensor& dout,
                   float alpha,
                   DenseTensor* dx) {
  EluMKLDNNGradUseOutFunctor<T> functor;
  functor(dev_ctx, out, dout, alpha, 0, dx);
}

}  // namespace phi

PD_REGISTER_KERNEL(relu_grad,
                   OneDNN,
                   ALL_LAYOUT,
                   phi::ReluGradKernel,
                   float,
                   phi::dtype::bfloat16) {}

#define PD_REGISTER_ACTIVATION_GRAD_KERNEL(name, func) \
  PD_REGISTER_KERNEL(                                  \
      name, OneDNN, ALL_LAYOUT, phi::func, float, phi::dtype::bfloat16) {}

248
PD_REGISTER_ACTIVATION_GRAD_KERNEL(abs_grad, AbsGradKernel)
249 250 251 252 253 254 255 256 257
PD_REGISTER_ACTIVATION_GRAD_KERNEL(elu_grad, EluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(exp_grad, ExpGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(hard_swish_grad, HardSwishGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(leaky_relu_grad, LeakyReluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(mish_grad, MishGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sigmoid_grad, SigmoidGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sqrt_grad, SqrtGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(swish_grad, SwishGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tanh_grad, TanhGradKernel)