reduce_cuda_impl.h 30.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include "paddle/fluid/framework/array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/cast_op.h"
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
39
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
40 41 42 43 44 45
#include "paddle/fluid/platform/fast_divmod.h"

#include "paddle/fluid/operators/kernel_primitives/compute_primitives.h"
#include "paddle/pten/api/ext/dispatch.h"
#include "paddle/pten/api/include/tensor.h"
#include "paddle/pten/kernels/cuda/utils.h"
C
Chen Weihang 已提交
46
#include "paddle/pten/kernels/hybird/math/cast_func.h"
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
#define REDUCE_VEC_SIZE 4

namespace pten {
namespace detail {

namespace kps = paddle::operators::kernel_primitives;

namespace details {

static inline int GetLastPow2(int n) {
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
  return std::max(1, n - (n >> 1));
}

static inline int64_t AlignUp(int64_t a, int64_t b) { return (a + b - 1) / b; }

// get strides of x_dim, reduce_dim and left_dim for reduceLastDim and reduceAny
static inline std::vector<int64_t> GetDimStrides(
    const std::vector<int64_t>& dims, const std::vector<int64_t>& idx) {
  int n = static_cast<int>(idx.size());
  if (n == 0) return std::vector<int64_t>();
  std::vector<int64_t> strides(n);
  strides.back() = 1;
  for (int i = n - 2; i >= 0; --i) {
    strides[i] = strides[i + 1] * dims[idx[i + 1]];
  }
  return strides;
}

// get blockDim for reduceLastDim and reduceAny
static inline int GetBlockDim(int block_dim) {
  return block_dim >= kps::details::kReduceMaxThread
             ? kps::details::kReduceMaxThread
             : GetLastPow2(block_dim);
}

// check reduce rand is valid
static inline void CheckReduceRank(int reduce_rank, int rank) {
  if (rank % 2 == 0) {
    PADDLE_ENFORCE_EQ(reduce_rank,
                      rank / 2,
                      paddle::platform::errors::InvalidArgument(
                          "ReduceOp: invalid reduce rank. When rank = %d, "
                          "reduce_rank must be %d, but got %d.",
                          rank,
                          rank / 2,
                          reduce_rank));
  } else {
    auto lower_rank = (rank - 1) / 2;
    auto upper_rank = (rank + 1) / 2;
    PADDLE_ENFORCE_EQ(
        reduce_rank == lower_rank || reduce_rank == upper_rank,
        true,
        paddle::platform::errors::InvalidArgument(
            "ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
            "must be %d or %d, but got %d.",
            rank,
            lower_rank,
            upper_rank,
            reduce_rank));
  }
}

// convert dims from vector to array
template <typename T, size_t ElementCount, typename VectorLikeType>
static inline paddle::framework::Array<T, ElementCount> VectorToArray(
    const VectorLikeType& vec) {
  PADDLE_ENFORCE_LE(vec.size(),
                    ElementCount,
                    paddle::platform::errors::InvalidArgument(
                        "Cub reduce Array: size not match. Received "
                        "vec.size() %d > ElementCount %d.",
                        vec.size(),
                        ElementCount));
  size_t n = static_cast<size_t>(vec.size());
  paddle::framework::Array<T, ElementCount> ret;
  for (size_t i = 0; i < n; ++i) {
    ret[i] = vec[i];
  }
  return ret;
}

}  // namespace details

constexpr int kMaxRank = pten::DDim::kMaxRank;

enum ReduceType {
  kReduceLastDim = 0x01,    // when reduce_dim[0] == x_dim.size() - 1;
  kReduceHigherDim = 0x02,  // ReduceFirstDim or reduceSecondDim
  kReduceAny = 0x03,        // when reduce_dim.size() > 1
};

struct IndexCalculator {
  IndexCalculator(int dim,
                  const std::vector<int64_t>& cal_dims,
                  const std::vector<int64_t>& cal_strides,
                  const std::vector<int64_t>& full_strides)
      : dim(dim) {
    dims = details::VectorToArray<int, kMaxRank>(cal_dims);
    strides = details::VectorToArray<int, kMaxRank>(full_strides);
    std::vector<paddle::platform::FastDivMod> cal_divmoders;
    // fast divmod
    for (auto i : cal_strides) {
      cal_divmoders.push_back(paddle::platform::FastDivMod(i));
    }
    divmoders = details::VectorToArray<paddle::platform::FastDivMod, kMaxRank>(
        cal_divmoders);
  }

  __device__ inline int operator()(int offset) const {
    int index = 0;
#pragma unroll
    for (int i = 0; i < kMaxRank; ++i) {
      if (i == dim) {
        break;
      }
      auto divmod = divmoders[i].Divmod(offset);
      index += (divmod.val[0] * strides[dims[i]]);
      offset = divmod.val[1];
    }
    return index;
  }

  int dim;
  paddle::framework::Array<int, kMaxRank> dims;
  paddle::framework::Array<int, kMaxRank> strides;
  paddle::framework::Array<paddle::platform::FastDivMod, kMaxRank> divmoders;
};

template <bool ReduceLastDim = false>
struct ReduceIndexMapping {
  const kps::DimConfig dim;
  HOSTDEVICE explicit ReduceIndexMapping(const kps::DimConfig& dims)
      : dim(dims) {}

  __device__ __forceinline__ int BlockIdX() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    } else {
      return cluster_id() % dim.split_num_x;
    }
#else
    return blockIdx.x;
#endif
  }

  __device__ __forceinline__ int BlockIdY() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return (cluster_id() % dim.split_num_x);
    } else {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    }
#else
    return blockIdx.y;
#endif
  }

  __device__ __forceinline__ int BlockDimX() {
#ifdef PADDLE_WITH_XPU2
    return dim.deal_size_x;
#else
    return blockDim.x;
#endif
  }

  __device__ __forceinline__ int BlockDimY() {
#ifdef PADDLE_WITH_XPU2
    return dim.deal_size_y;
#else
    return blockDim.y;
#endif
  }

  __device__ __forceinline__ int GridDimX() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.split_num_y;
    } else {
      return dim.split_num_x;
    }
#else
    return gridDim.x;
#endif
  }

  __device__ __forceinline__ int GridDimY() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.split_num_x;
    } else {
      return dim.split_num_y;
    }
#else
    return gridDim.y;
#endif
  }

  __device__ __forceinline__ int GetLoopSize() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.deal_size_y;
    } else {
      return dim.deal_size_x;
    }
#else
    return 1;
#endif
  }
};

// when reduce_type == kReduceLastDim this struct will be used
// for higher performance
struct OneDimIndexCal {
  explicit OneDimIndexCal(int num) : stride(num) {}

  __device__ inline int operator()(int index) const { return index * stride; }
  int stride;
};

// reduce config
template <typename Ty>
struct ReduceConfig {
  ReduceConfig(const std::vector<int64_t>& origin_reduce_dims,
               const std::vector<int64_t>& origin_x_dim)
      : reduce_dims_origin(origin_reduce_dims), x_dim(origin_x_dim) {}

  // get the parameters of reduceKernel
  void Run() {
    // step1: update the reduce_dim left_dim and x_dim
    SetReduceDim();

    // step2: get the strides of dim for reduceAny and reduceLastDim
    SetStrides();

    // step3: get the type of reduce
    SetReduceType();

    // step4: set the block and grid for launch kernel
    SetBlockDim();
  }

  // when should_reduce_again is true, we need malloc temp space for temp data
  void SetOutputData(Ty* y_data,
                     const paddle::platform::Place& place,
                     pten::DenseTensor* tmp) {
    if (should_reduce_again) {
      tmp->Resize(paddle::framework::make_ddim(
          {static_cast<int64_t>(left_num * grid.z * grid.y * sizeof(Ty))}));
      output_data = tmp->mutable_data<Ty>();
    } else {
      output_data = y_data;
    }
  }

 private:
  // set reduce_dim, left_dim and update x_dim
  // eg: x_dim = [2, 4, 6] origin_reduce_dims = [0, 1]
  //     --SetReduceDim--> x_dim = [8,6], reduce_dim = [0], left_dim = [1]
  void SetReduceDim() {
    std::set<int64_t> reduce_set;
    for (auto e : reduce_dims_origin) {
      auto pos = e >= 0 ? e : e + x_dim.size();
      reduce_set.insert(pos);
    }

    std::vector<int64_t> reduce_dim_temp(reduce_set.begin(), reduce_set.end());
    std::sort(reduce_dim_temp.begin(), reduce_dim_temp.end());

    // update reduce_dim and x_dim
    std::vector<int64_t> x_new_dim;

    reduce_dim.push_back(reduce_dim_temp[0]);
    x_new_dim.push_back(x_dim[0]);

    int idx_reduce = 1;
    int num = 0;

    if (reduce_dim_temp.size() > 1) {
      for (int i = 1; i < x_dim.size(); i++) {
        if ((idx_reduce < reduce_dim_temp.size()) &&
            (i == reduce_dim_temp[idx_reduce])) {
          int result =
              reduce_dim_temp[idx_reduce] - reduce_dim[reduce_dim.size() - 1];
          bool is_equal = ((result - num) == 1);
          if (is_equal) {
            x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
            num++;
          } else {
            reduce_dim.push_back(reduce_dim_temp[idx_reduce] - num);
            x_new_dim.push_back(x_dim[i]);
          }
          idx_reduce++;
        } else {
          x_new_dim.push_back(x_dim[i]);
        }
      }
    } else {
      x_new_dim = x_dim;
    }

    // update x_dim
    x_dim = x_new_dim;
    std::vector<int64_t>().swap(x_new_dim);

    std::vector<int64_t> reduce_dim_new;
    int is_reduced = 0;
    for (auto e : reduce_dim) {
      is_reduced |= 1 << e;
    }

    std::vector<int64_t>().swap(reduce_dim);

    for (int i = 0; i < x_dim.size(); i++) {
      if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) {
        x_new_dim.push_back(x_dim[i]);
        if ((is_reduced >> i) & 1)
          reduce_dim_new.push_back(x_new_dim.size() - 1);
      } else {
        x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
      }
    }

    x_dim = x_new_dim;
    reduce_dim = reduce_dim_new;

    int x_rank = static_cast<int>(x_dim.size());
    std::set<int> left_set;

    for (int i = 0; i < x_rank; ++i) {
      left_set.insert(i);
    }

    for (auto e : reduce_dim) {
      left_set.erase(e);
    }

    left_dim.assign(left_set.begin(), left_set.end());

    // if the last dim gets involved in reduction
    reduce_last_dim = (reduce_dim.back() == x_dim.size() - 1);
  }

  // set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny
  // eg: x_dim = [8, 6], reduce_dim = [0], left_dim = [1]
  //     --SetStrides--> x_strides= [6,1], reduce_strides = [1],
  //     left_strides = [1]
  void SetStrides() {
    std::vector<int64_t> idx_dim;
    for (int i = 0; i < x_dim.size(); i++) {
      idx_dim.push_back(i);
    }

    x_strides = details::GetDimStrides(x_dim, idx_dim);
    reduce_strides = details::GetDimStrides(x_dim, reduce_dim);
    left_strides = details::GetDimStrides(x_dim, left_dim);
    reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]];

    left_num = 1;
    if (left_dim.size()) {
      left_num = left_strides[0] * x_dim[left_dim[0]];
    }
  }

  // get the reduceType
  // eg: x_dim = [8, 6] reduce_dim = [0] --> ReduceHigherDim -->reduceFirstDim
  //     x_dim = [8, 6] reduce_dim = [1] --> reduceLastDim
  //     x_dim = [8] reduce_dim = [0] --> reduceAll
  //     x_dim = [8, 6, 4, 2] reduce_dim = [0, 2] --> reduceAny
  void SetReduceType() {
    int rank = x_dim.size();
    int reduce_rank = reduce_dim.size();
    bool is_last_dim =
        (rank == 2) && (reduce_rank == 1) && (reduce_dim[0] == 1);
    if (rank == reduce_rank || is_last_dim) {
      reduce_type = static_cast<int>(ReduceType::kReduceLastDim);
    } else if (reduce_rank == 1) {
// ReduceFirstDim and reduceSecondDim
#ifdef PADDLE_WITH_XPU2
      if (reduce_dim[0] == 0) {
        reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
      } else {
        reduce_type = static_cast<int>(ReduceType::kReduceAny);
      }
#else
      reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
#endif
    } else {
      reduce_type = static_cast<int>(ReduceType::kReduceAny);
    }
  }

  void SetBlockDimForReduceAny(dim3* block_dim, dim3* grid_dim) {
    constexpr int min_reduce_num_per_thread = 16;
    constexpr int max_reduce_num_per_thread = 256;
    constexpr int max_num_threads = kps::details::kReduceMaxThread;

    // set block size.
    // 1. If reduce_last_dim == true, all the threads whose threadIdx.y are same
    //    will process the reduction for one output.
    //    The number of output for one block is blockDim.y;
    // 2. If reduce_last_dim == false, different threadIdx.x will process
    //    different reduction and gets the output separately. If it is
    //    necessary, it should reduce in block y.
    //    The number of output for one block is blockDim.x;
    int block_x, block_y;
    int grid_num, reduce_num_per_thread;
    if (reduce_last_dim) {
      block_x = details::GetBlockDim(reduce_num);
      block_y = details::GetBlockDim(left_num);
      block_dim->x = block_x;
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      grid_num = details::AlignUp(left_num, block_dim->y);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->x);
    } else {
      block_x = details::GetBlockDim(left_num);
      block_y = details::GetBlockDim(reduce_num);
      block_dim->x = std::min(block_x, 32);
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      block_dim->x =
          std::min(block_x, static_cast<int>(max_num_threads / block_dim->y));
      grid_num = details::AlignUp(left_num, block_dim->x);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->y);
    }
    int device_id = paddle::platform::GetCurrentDeviceId();
482
    int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
483
    int max_threads_per_mp =
484
        paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    int max_threads = max_threads_per_mp * max_mp;
    int num_threads = block_dim->x * block_dim->y;
    int max_num_blocks = max_threads / num_threads;

    // set grid size.
    // Whether to set grid.y larger than 1, there are 3 following rules:
    // 1. The number that each thread process should no less than
    //    min_reduce_num_per_threadbut no more than max_reduce_num_per_thread;
    // 2. It should maximize the utilization of SM.
    // So we choose the minimum between input_split_num_1 and input_split_num_3
    // to make each thread process as mush data as possible. Meanwhile,
    // the number cannot be larger than max_reduce_num_per_thread, so we
    // choose the maximum between the result above and input_split_num_2.
    int input_split_num_1 =
        details::AlignUp(reduce_num_per_thread, min_reduce_num_per_thread);
    int input_split_num_2 =
        details::AlignUp(reduce_num_per_thread, max_reduce_num_per_thread);
    int input_split_num_3 = details::AlignUp(max_num_blocks, grid_num);

    grid_dim->x = grid_num;
    grid_dim->y = std::max(std::min(input_split_num_1, input_split_num_3),
                           input_split_num_2);
    // if grid.y > 1, we need launch reduce kernel again.
    if (grid_dim->y > 1) {
      should_reduce_again = true;
    }
  }

  // set block and grid for launch kernel
  // for ReduceHigherDim: if block is enough -> splite reduce_num
  //                     else init block(32, 1) grid(block_num, 1)
  // for others: block(block_num, 1) , grid(left_num, 1)
  void SetBlockDimForHigher(dim3* block_dim, dim3* grid_dim) {
    int last_dim_num = x_dim.back();
    // update left_num
    int grid_z = left_num / last_dim_num;
    left_num = last_dim_num;
    grid_dim->z = grid_z;
    int device_id = paddle::platform::GetCurrentDeviceId();
524
    int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
525
    int max_threads_per_mp =
526
        paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
    int max_threads = max_threads_per_mp * max_mp;
    // init
    int num_block = (max_threads / left_num);
    block_dim->x = details::GetBlockDim(left_num);
    grid_dim->x = details::AlignUp(left_num, block_dim->x);
    blocking_size = reduce_num;

    if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) {
      blocking_size = details::GetLastPow2(reduce_num / num_block);
      if (blocking_size <= 1) {
        blocking_size = details::GetLastPow2(sqrt(reduce_num));
      } else if (blocking_size * 2 < reduce_num) {
        blocking_size *= 2;
      }
      should_reduce_again = true;
      grid_dim->y = details::AlignUp(reduce_num, blocking_size);
    }
  }

  void SetBlockDim() {
    // init
    int block_num = details::GetBlockDim(reduce_num);
    should_reduce_again = false;
    dim3 block_dim(block_num, 1, 1);
    dim3 grid_dim(left_num, 1, 1);
    blocking_size = reduce_num;
#ifdef PADDLE_WITH_XPU2
    if (reduce_last_dim) {
      block_dim.x = 128;
      block_dim.y = reduce_num;
      grid_dim.x = 8;
      grid_dim.y = 1;
    } else {
      block_dim.x = 128;
      block_dim.y = left_num;
      grid_dim.x = 8;
      grid_dim.y = 1;
    }
#else
    if (reduce_type == ReduceType::kReduceHigherDim) {
      SetBlockDimForHigher(&block_dim, &grid_dim);
    } else {
      SetBlockDimForReduceAny(&block_dim, &grid_dim);
    }
#endif

    block = block_dim;
    grid = grid_dim;
  }

 public:
  std::vector<int64_t> reduce_dims_origin;
  std::vector<int64_t> reduce_dim;
  std::vector<int64_t> x_dim;
  std::vector<int64_t> left_dim;
  std::vector<int64_t> x_strides;
  std::vector<int64_t> left_strides;
  std::vector<int64_t> reduce_strides;

  int reduce_type;
  int reduce_num;
  int left_num;
  int blocking_size;
  bool should_reduce_again;
  bool reduce_last_dim;

  Ty* output_data;

  dim3 block;
  dim3 grid;
};

template <typename Tx, typename Ty, typename MPType, typename ReduceOp>
static void LaunchReduceKernel(const Tx* x_data,
                               Ty* y_data,
                               const ReduceOp& reducer,
                               MPType init,
                               gpuStream_t stream,
                               ReduceConfig<Ty> config) {
  using TransformOp = typename ReduceOp::Transformer;

  if (config.reduce_type == kReduceLastDim) {
    int stride_reduce = 1;
    int stride_left = config.reduce_num;
    // for higher performance
    auto reduce_index_calculator = OneDimIndexCal(stride_reduce);
    auto left_index_calculator = OneDimIndexCal(stride_left);

    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.block.y,
                                        0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU2
    paddle::operators::ReduceAnyKernel<Tx,
                                       Ty,
                                       MPType,
                                       ReduceOp,
                                       TransformOp,
                                       OneDimIndexCal><<<8, 128, stream>>>(
        x_data,
        config.output_data,
        reducer,
        TransformOp(config.reduce_num),
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
#else
    paddle::operators::ReduceAnyKernel<
        Tx,
        Ty,
        MPType,
        ReduceOp,
        TransformOp,
        OneDimIndexCal><<<config.grid, config.block, 0, stream>>>(
        x_data,
        config.output_data,
        reducer,
        TransformOp(config.reduce_num),
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
#endif

  } else {
    int reduce_rank = config.reduce_strides.size();
    int left_rank = config.left_strides.size();
    auto reduce_index_calculator = IndexCalculator(reduce_rank,
                                                   config.reduce_dim,
                                                   config.reduce_strides,
                                                   config.x_strides);
    auto left_index_calculator = IndexCalculator(
        left_rank, config.left_dim, config.left_strides, config.x_strides);

    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.block.y,
                                        0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU2
    paddle::operators::ReduceAnyKernel<Tx,
                                       Ty,
                                       MPType,
                                       ReduceOp,
                                       TransformOp,
                                       IndexCalculator><<<8, 128, stream>>>(
        x_data,
        config.output_data,
        reducer,
        TransformOp(config.reduce_num),
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
#else
    paddle::operators::ReduceAnyKernel<
        Tx,
        Ty,
        MPType,
        ReduceOp,
        TransformOp,
        IndexCalculator><<<config.grid, config.block, 0, stream>>>(
        x_data,
        config.output_data,
        reducer,
        TransformOp(config.reduce_num),
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
#endif
  }

  if (config.should_reduce_again) {
    dim3 block;
    dim3 grid;
    if (config.reduce_last_dim) {
      block = dim3(32, 1, 1);
      grid = dim3(details::AlignUp(config.left_num, 32), 1, 1);
    } else {
      block = dim3(config.block.x, 1, 1);
      grid = dim3(config.grid.x, 1, config.grid.z);
    }

    auto last_index = OneDimIndexCal(1);
    auto first_index = OneDimIndexCal(config.left_num);
    kps::DimConfig dim =
        kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
    dim.SetRem(config.left_num % block.x, 0, 0);
#ifdef PADDLE_WITH_XPU2
    paddle::operators::ReduceHigherDimKernel<
        Ty,
        Ty,
        MPType,
        ReduceOp,
        kps::IdentityFunctor<Ty, MPType>><<<8, 128, stream>>>(
        config.output_data,
        y_data,
        reducer,
        kps::IdentityFunctor<Ty, MPType>(config.grid.y),
        init,
        config.grid.y,
        config.left_num,
        config.grid.y,
        dim);
#else
    paddle::operators::ReduceHigherDimKernel<
        Ty,
        Ty,
        MPType,
        ReduceOp,
        kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
        config.output_data,
        y_data,
        reducer,
        kps::IdentityFunctor<Ty, MPType>(config.grid.y),
        init,
        config.grid.y,
        config.left_num,
        config.grid.y,
        dim);
#endif
  }
}

template <typename Tx,
          typename Ty,
          template <typename, typename> class ReduceOp>
void TensorReduceFunctorImpl(const pten::DenseTensor& x,
                             pten::DenseTensor* y,
                             std::vector<int64_t> origin_reduce_dims,
                             gpuStream_t stream) {
  // Allocate memory
  y->mutable_data<Ty>();
  auto x_dim = paddle::framework::vectorize<int64_t>(x.dims());
  auto config = ReduceConfig<Ty>(origin_reduce_dims, x_dim);
  config.Run();
  int64_t numel = x.numel();
  // after config.run()
  // SetOutputData for ReduceHigherDim when should_reduce_again is true,
  // temp_output should be stored temp_data in output_data space or stored in
  // y_data;
  pten::DDim tmp_ddim;
  const auto alloc =
      std::make_shared<paddle::experimental::DefaultAllocator>(y->place());
  pten::DenseTensor tmp = pten::DenseTensor(
      alloc, pten::DenseTensorMeta(y->dtype(), tmp_ddim, y->layout()));

  auto x_data = x.data<Tx>();
  auto y_data = y->mutable_data<Ty>();

  auto* dev_ctx = static_cast<paddle::platform::CUDADeviceContext*>(
      paddle::platform::DeviceContextPool::Instance().Get(x.place()));
  if (config.reduce_num == 1) {
    auto out_dims = y->dims();
    if (x.dtype() == y->dtype()) {
      pten::Copy(*dev_ctx, x, true, y);
      y->Resize(out_dims);
    } else {
      PD_VISIT_ALL_TYPES(y->dtype(), "CastKernelImpl", ([&] {
                           pten::math::CastKernelImpl<CUDAContext, Tx, data_t>(
                               *dev_ctx, x, y);
                         }));
    }
    return;
  }

  config.SetOutputData(y_data, x.place(), &tmp);
  bool use_cub_reduce = (config.reduce_num == numel) &&
                        (!std::is_same<Tx, paddle::platform::float16>::value);
  if (use_cub_reduce) {
    // launch CUB::Reduce
    using TransformOp = typename ReduceOp<Tx, Ty>::Transformer;
    auto reducer = ReduceOp<Tx, Ty>();
    cub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(
        x_data, TransformOp(config.reduce_num));
    size_t temp_storage_bytes = 0;
    cub::DeviceReduce::Reduce(nullptr,
                              temp_storage_bytes,
                              trans_x,
                              y_data,
                              config.reduce_num,
                              reducer,
                              reducer.initial(),
                              stream);
    // framework::Tensor tmp;
    const auto alloc =
        std::make_shared<paddle::experimental::DefaultAllocator>(x.place());
    pten::DenseTensor tmp = pten::DenseTensor(
        alloc,
        pten::DenseTensorMeta(pten::DataType::UINT8,
                              paddle::framework::make_ddim(
                                  {static_cast<int64_t>(temp_storage_bytes)}),
                              x.layout()));
    auto* temp_storage = tmp.mutable_data<uint8_t>();
    cub::DeviceReduce::Reduce(temp_storage,
                              temp_storage_bytes,
                              trans_x,
                              y_data,
                              config.reduce_num,
                              reducer,
                              reducer.initial(),
                              stream);

    return;
  }

  using MPType =
      typename paddle::operators::kernel_primitives::details::MPTypeTrait<
          Ty>::Type;
  auto reducer = ReduceOp<Tx, MPType>();
  // launch ReduceHigherDimKernel
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  // eg: x_dim = {nz, ny, nx}, nx != 1, axis can be 0 or 1
  //     if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx /
  //     32
  //     else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32
  if (config.reduce_type == ReduceType::kReduceHigherDim) {
    using TransformOp = typename ReduceOp<Tx, MPType>::Transformer;
    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.blocking_size,
                                        0);
    dim.SetRem(config.left_num % config.block.x,
               config.reduce_num % config.blocking_size,
               0);

#ifdef PADDLE_WITH_XPU2
    paddle::operators::ReduceHigherDimKernel<Tx,
                                             Ty,
                                             MPType,
                                             ReduceOp<Tx, MPType>,
                                             TransformOp><<<8, 128, stream>>>(
        x_data,
        config.output_data,
        reducer,
        TransformOp(config.reduce_num),
        reducer.initial(),
        config.reduce_num,
        config.left_num,
        config.blocking_size,
        dim);
#else
    paddle::operators::ReduceHigherDimKernel<
        Tx,
        Ty,
        MPType,
        ReduceOp<Tx, MPType>,
        TransformOp><<<config.grid, config.block, 0, stream>>>(
        x_data,
        config.output_data,
        reducer,
        TransformOp(config.reduce_num),
        reducer.initial(),
        config.reduce_num,
        config.left_num,
        config.blocking_size,
        dim);
#endif

    if (config.should_reduce_again) {
      dim3 block = dim3(config.block.x, 1, 1);
      dim3 grid = dim3(config.grid.x, 1, config.grid.z);
      kps::DimConfig dim2 =
          kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
      dim2.SetRem(config.left_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU2
      paddle::operators::ReduceHigherDimKernel<
          Ty,
          Ty,
          MPType,
          ReduceOp<Tx, MPType>,
          kps::IdentityFunctor<Ty, MPType>><<<8, 128, stream>>>(
          config.output_data,
          y_data,
          reducer,
          kps::IdentityFunctor<Ty, MPType>(config.grid.y),
          reducer.initial(),
          config.grid.y,
          config.left_num,
          config.grid.y,
          dim2);
#else
      paddle::operators::ReduceHigherDimKernel<
          Ty,
          Ty,
          MPType,
          ReduceOp<Tx, MPType>,
          kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
          config.output_data,
          y_data,
          reducer,
          kps::IdentityFunctor<Ty, MPType>(config.grid.y),
          reducer.initial(),
          config.grid.y,
          config.left_num,
          config.grid.y,
          dim2);
#endif
    }
    return;
  }

  // when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
  // when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
  // function will be used
  LaunchReduceKernel<Tx, Ty, MPType, ReduceOp<Tx, MPType>>(
      x_data, y_data, reducer, reducer.initial(), stream, config);
}

}  // namespace detail
}  // namespace pten