label_smooth_op.h 2.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yibing Liu 已提交
19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class LabelSmoothKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* out_t = ctx.Output<framework::LoDTensor>("Out");
    auto* in_t = ctx.Input<framework::LoDTensor>("X");
29
    auto* dist_t = ctx.Input<framework::Tensor>("PriorDist");
30
    auto label_dim = in_t->dims()[in_t->dims().size() - 1];
Y
Yibing Liu 已提交
31
    out_t->mutable_data<T>(ctx.GetPlace());
W
whs 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    if (label_dim != 0) {
      auto epsilon = ctx.Attr<float>("epsilon");
      auto out = framework::EigenVector<T>::Flatten(*out_t);
      auto in = framework::EigenVector<T>::Flatten(*in_t);
      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      if (dist_t) {
        auto dist = framework::EigenVector<T>::Flatten(*dist_t);
        out.device(dev) = static_cast<T>(1 - epsilon) * in +
                          static_cast<T>(epsilon) *
                              dist.broadcast(Eigen::DSizes<int, 1>(
                                  in_t->numel() / label_dim));
      } else {
        out.device(dev) = static_cast<T>(1 - epsilon) * in +
                          static_cast<T>(epsilon / label_dim);
      }
47
    }
Y
Yibing Liu 已提交
48 49 50 51 52 53 54 55 56 57
  }
};

template <typename DeviceContext, typename T>
class LabelSmoothGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_in_t = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    d_in_t->mutable_data<T>(ctx.GetPlace());
W
whs 已提交
58 59 60 61
    auto d_out_dim = d_out_t->dims()[d_out_t->dims().size() - 1];
    if (d_out_dim != 0) {
      auto d_out = framework::EigenVector<T>::Flatten(*d_out_t);
      auto d_in = framework::EigenVector<T>::Flatten(*d_in_t);
Y
Yibing Liu 已提交
62

W
whs 已提交
63 64 65 66
      auto epsilon = ctx.Attr<float>("epsilon");
      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      d_in.device(dev) = static_cast<T>(1 - epsilon) * d_out;
    }
Y
Yibing Liu 已提交
67 68 69 70
  }
};
}  // namespace operators
}  // namespace paddle