roi_align_op.h 13.0 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <limits>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

J
jerrywgz 已提交
24 25
static constexpr int kROISize = 4;

J
jerrywgz 已提交
26
template <class T>
J
jerrywgz 已提交
27
void PreCalcForBilinearInterpolate(
J
jerrywgz 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    const platform::DeviceContext& ctx, const int height, const int width,
    const int pooled_height, const int pooled_width, const int iy_upper,
    const int ix_upper, T roi_ymin, T roi_xmin, T bin_size_h, T bin_size_w,
    int roi_bin_grid_h, int roi_bin_grid_w, Tensor* pre_pos, Tensor* pre_w) {
  int pre_calc_index = 0;
  int* pre_pos_data = pre_pos->mutable_data<int>(ctx.GetPlace());
  T* pre_w_data = pre_w->mutable_data<T>(ctx.GetPlace());
  for (int ph = 0; ph < pooled_height; ph++) {
    for (int pw = 0; pw < pooled_width; pw++) {
      for (int iy = 0; iy < iy_upper; iy++) {
        // calculate y of sample points
        T y = roi_ymin + ph * bin_size_h +
              static_cast<T>(iy + .5f) * bin_size_h /
                  static_cast<T>(roi_bin_grid_h);
        // calculate x of samle points
        for (int ix = 0; ix < ix_upper; ix++) {
          T x = roi_xmin + pw * bin_size_w +
                static_cast<T>(ix + .5f) * bin_size_w /
                    static_cast<T>(roi_bin_grid_w);
          // deal with elements out of map
          if (y < -1.0 || y > height || x < -1.0 || x > width) {
J
jerrywgz 已提交
49 50 51
            for (int i = 0; i < kROISize; ++i) {
              pre_pos_data[i + pre_calc_index * kROISize] = 0;
              pre_w_data[i + pre_calc_index * kROISize] = 0;
J
jerrywgz 已提交
52 53 54 55
            }
            pre_calc_index += 1;
            continue;
          }
J
jerrywgz 已提交
56 57
          y = y <= 0 ? 0 : y;
          x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

          int y_low = static_cast<int>(y);
          int x_low = static_cast<int>(x);
          int y_high;
          int x_high;
          if (y_low >= height - 1) {
            y_high = y_low = height - 1;
            y = static_cast<T>(y_low);
          } else {
            y_high = y_low + 1;
          }
          if (x_low >= width - 1) {
            x_high = x_low = width - 1;
            x = static_cast<T>(x_low);
          } else {
            x_high = x_low + 1;
          }
          T ly = y - y_low, lx = x - x_low;
          T hy = 1. - ly, hx = 1. - lx;
J
jerrywgz 已提交
77 78 79 80 81 82 83 84
          pre_pos_data[pre_calc_index * kROISize] = y_low * width + x_low;
          pre_pos_data[pre_calc_index * kROISize + 1] = y_low * width + x_high;
          pre_pos_data[pre_calc_index * kROISize + 2] = y_high * width + x_low;
          pre_pos_data[pre_calc_index * kROISize + 3] = y_high * width + x_high;
          pre_w_data[pre_calc_index * kROISize] = hy * hx;
          pre_w_data[pre_calc_index * kROISize + 1] = hy * lx;
          pre_w_data[pre_calc_index * kROISize + 2] = ly * hx;
          pre_w_data[pre_calc_index * kROISize + 3] = ly * lx;
J
jerrywgz 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
          pre_calc_index += 1;
        }
      }
    }
  }
}

template <class T>
void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
                                   const T out_grad_this_bin, const T count,
                                   T* batch_grad_data) {
  int x_low, y_low, x_high, y_high;
  T w1, w2, w3, w4;
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    w1 = w2 = w3 = w4 = 0;
    x_low = x_high = y_low = y_high = -1;
    return;
  }
J
jerrywgz 已提交
103 104
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  y_low = static_cast<int>(y);
  x_low = static_cast<int>(x);
  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = static_cast<T>(y_low);
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = static_cast<T>(x_low);
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low, lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;
  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
  T diff1 = out_grad_this_bin * w1 / count;
  T diff2 = out_grad_this_bin * w2 / count;
  T diff3 = out_grad_this_bin * w3 / count;
  T diff4 = out_grad_this_bin * w4 / count;
  if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    *(batch_grad_data + y_low * width + x_low) += diff1;
    *(batch_grad_data + y_low * width + x_high) += diff2;
    *(batch_grad_data + y_high * width + x_low) += diff3;
    *(batch_grad_data + y_high * width + x_high) += diff4;
  }
}

template <typename DeviceContext, typename T>
class CPUROIAlignOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
    auto* out = ctx.Output<framework::Tensor>("Out");
    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");

    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    auto in_dims = in->dims();
J
jerrywgz 已提交
151 152 153 154 155
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];
J
jerrywgz 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

    auto in_stride = framework::stride(in_dims);
    auto roi_stride = framework::stride(rois->dims());
    auto out_stride = framework::stride(out->dims());

    const T* input_data = in->data<T>();
    framework::Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(ctx.GetPlace());

    auto rois_lod = rois->lod().back();
    int rois_batch_size = rois_lod.size() - 1;
    PADDLE_ENFORCE_EQ(
        rois_batch_size, batch_size,
        "The rois_batch_size and imgs batch_size must be the same.");
    int rois_num_with_lod = rois_lod[rois_batch_size];
    PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
                      "The rois_num from input and lod must be the same.");
    for (int n = 0; n < rois_batch_size; ++n) {
      for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
      }
    }
    T* output_data = out->mutable_data<T>(ctx.GetPlace());
    const T* rois_data = rois->data<T>();
    for (int n = 0; n < rois_num; ++n) {
      int roi_batch_id = roi_batch_id_data[n];
      T roi_xmin = rois_data[0] * spatial_scale;
      T roi_ymin = rois_data[1] * spatial_scale;
      T roi_xmax = rois_data[2] * spatial_scale;
      T roi_ymax = rois_data[3] * spatial_scale;

      T roi_width = std::max(roi_xmax - roi_xmin, static_cast<T>(1.));
      T roi_height = std::max(roi_ymax - roi_ymin, static_cast<T>(1.));
      T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
      T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
      const T* batch_data = input_data + roi_batch_id * in_stride[0];

      int roi_bin_grid_h = (sampling_ratio > 0)
                               ? sampling_ratio
                               : ceil(roi_height / pooled_height);
      int roi_bin_grid_w = (sampling_ratio > 0)
                               ? sampling_ratio
                               : ceil(roi_width / pooled_width);
      const T count = roi_bin_grid_h * roi_bin_grid_w;
      Tensor pre_pos;
      Tensor pre_w;
      int pre_size = count * out_stride[1];
J
jerrywgz 已提交
205 206
      pre_pos.Resize({pre_size, kROISize});
      pre_w.Resize({pre_size, kROISize});
J
jerrywgz 已提交
207

J
jerrywgz 已提交
208
      PreCalcForBilinearInterpolate(
J
jerrywgz 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221
          dev_ctx, height, width, pooled_height, pooled_width, roi_bin_grid_h,
          roi_bin_grid_w, roi_ymin, roi_xmin, bin_size_h, bin_size_w,
          roi_bin_grid_h, roi_bin_grid_w, &pre_pos, &pre_w);
      const int* pre_pos_data = pre_pos.data<int>();
      const T* pre_w_data = pre_w.data<T>();
      for (int c = 0; c < channels; c++) {
        int pre_calc_index = 0;
        for (int ph = 0; ph < pooled_height; ph++) {
          for (int pw = 0; pw < pooled_width; pw++) {
            const int pool_index = ph * pooled_width + pw;
            T output_val = 0;
            for (int iy = 0; iy < roi_bin_grid_h; iy++) {
              for (int ix = 0; ix < roi_bin_grid_w; ix++) {
J
jerrywgz 已提交
222 223 224
                for (int i = 0; i < kROISize; i++) {
                  int pos = pre_pos_data[pre_calc_index * kROISize + i];
                  T w = pre_w_data[pre_calc_index * kROISize + i];
J
jerrywgz 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
                  output_val += w * batch_data[pos];
                }
                pre_calc_index += 1;
              }
            }
            output_val /= count;
            output_data[pool_index] = output_val;
          }
        }
        batch_data += in_stride[1];
        output_data += out_stride[1];
      }
      rois_data += roi_stride[0];
    }
  }
};

template <typename DeviceContext, typename T>
class CPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
    auto in_dims = in->dims();
J
jerrywgz 已提交
257 258 259 260 261 262 263 264 265 266 267
    if (!in_grad) {
      return;
    }
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
J
jerrywgz 已提交
268

J
jerrywgz 已提交
269 270 271 272 273
    auto rois_lod = rois->lod().back();
    int rois_batch_size = rois_lod.size() - 1;
    for (int n = 0; n < rois_batch_size; ++n) {
      for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
J
jerrywgz 已提交
274
      }
J
jerrywgz 已提交
275
    }
J
jerrywgz 已提交
276

J
jerrywgz 已提交
277 278 279
    const T* rois_data = rois->data<T>();
    const T* out_grad_data = out_grad->data<T>();
    T* in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());
J
jerrywgz 已提交
280

J
jerrywgz 已提交
281 282 283
    auto in_stride = framework::stride(in->dims());
    auto roi_stride = framework::stride(rois->dims());
    auto out_stride = framework::stride(out_grad->dims());
J
jerrywgz 已提交
284

J
jerrywgz 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    for (int n = 0; n < rois_num; ++n) {
      int roi_batch_idx = roi_batch_id_data[n];
      T roi_xmin = rois_data[0] * spatial_scale;
      T roi_ymin = rois_data[1] * spatial_scale;
      T roi_xmax = rois_data[2] * spatial_scale;
      T roi_ymax = rois_data[3] * spatial_scale;
      T roi_width = std::max(roi_xmax - roi_xmin, static_cast<T>(1.));
      T roi_height = std::max(roi_ymax - roi_ymin, static_cast<T>(1.));
      T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
      T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
      for (int c = 0; c < channels; ++c) {
        T* batch_grad_data =
            in_grad_data + roi_batch_idx * in_stride[0] + c * in_stride[1];
        const T* batch_out_grad_data =
            out_grad_data + n * out_stride[0] + c * out_stride[1];
        for (int ph = 0; ph < pooled_height; ++ph) {
          for (int pw = 0; pw < pooled_width; ++pw) {
            int pool_index = ph * pooled_width + pw;
            T out_grad_this_bin = batch_out_grad_data[pool_index];
            int roi_bin_grid_h = (sampling_ratio > 0)
                                     ? sampling_ratio
                                     : ceil(roi_height / pooled_height);
            int roi_bin_grid_w = (sampling_ratio > 0)
                                     ? sampling_ratio
                                     : ceil(roi_width / pooled_width);
            T count = roi_bin_grid_h * roi_bin_grid_w;
            for (int iy = 0; iy < roi_bin_grid_h; iy++) {
              const T y = roi_ymin + ph * bin_size_h +
                          static_cast<T>(iy + .5f) * bin_size_h /
                              static_cast<T>(roi_bin_grid_h);
              for (int ix = 0; ix < roi_bin_grid_w; ix++) {
                const T x = roi_xmin + pw * bin_size_w +
                            static_cast<T>(ix + .5f) * bin_size_w /
                                static_cast<T>(roi_bin_grid_w);
                bilinear_interpolate_gradient(height, width, y, x,
                                              out_grad_this_bin, count,
                                              batch_grad_data);
J
jerrywgz 已提交
322 323 324 325 326
              }
            }
          }
        }
      }
J
jerrywgz 已提交
327
      rois_data += roi_stride[0];
J
jerrywgz 已提交
328 329 330 331 332
    }
  }
};
}  // namespace operators
}  // namespace paddle