tester_helper.h 10.2 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
L
luotao1 已提交
18
#include <algorithm>
T
Tao Luo 已提交
19
#include <string>
L
luotao1 已提交
20 21 22 23 24 25
#include <thread>  // NOLINT
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
26
#include "paddle/fluid/inference/api/helper.h"
L
luotao1 已提交
27 28 29 30 31 32 33 34 35
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/platform/profiler.h"

DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
36 37
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
L
luotao1 已提交
38 39 40 41

namespace paddle {
namespace inference {

Y
Yan Chunwei 已提交
42 43
using contrib::AnalysisConfig;

L
luotao1 已提交
44
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
45
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
46
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
47
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
48 49
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
50
    auto &ref_out = ref_outputs[i];
51 52
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
53
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3);
        }
        break;
      }
L
luotao1 已提交
73 74 75 76
    }
  }
}

77 78
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
    const AnalysisConfig &config, bool use_analysis = true) {
T
Tao Luo 已提交
79
  if (use_analysis) {
S
superjomn 已提交
80
    return CreatePaddlePredictor<contrib::AnalysisConfig>(config);
T
Tao Luo 已提交
81
  } else {
T
Tao Luo 已提交
82
    return CreatePaddlePredictor<NativeConfig>(config);
T
Tao Luo 已提交
83 84 85
  }
}

86
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
87

88
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
89
                                                   int *num_ops) {
90
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
T
Tao Luo 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  auto &fuse_statis = analysis_predictor->analysis_argument()
                          .Get<std::unordered_map<std::string, int>>(
                              framework::ir::kFuseStatisAttr);
  for (auto &item : fuse_statis) {
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
       analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
    if (node->IsFunction()) {
      ++num;
    }
  }
  *num_ops = num;
  return fuse_statis;
}

L
luotao1 已提交
108
void TestOneThreadPrediction(
109 110
    const AnalysisConfig &config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
111
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
L
luotao1 已提交
112 113
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
114
  auto predictor = CreateTestPredictor(config, use_analysis);
L
luotao1 已提交
115 116 117 118 119 120 121 122 123 124 125 126
  Timer timer;
  timer.tic();
  for (int i = 0; i < num_times; i++) {
    for (size_t j = 0; j < inputs.size(); j++) {
      predictor->Run(inputs[j], outputs);
    }
  }
  PrintTime(batch_size, num_times, 1, 0, timer.toc() / num_times,
            inputs.size());
}

void TestMultiThreadPrediction(
127 128
    const AnalysisConfig &config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
129 130
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
131 132 133 134 135 136 137
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  std::vector<std::thread> threads;
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  // TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled
  // because AttentionLSTM's hard code nodeid will be damanged.
  for (int tid = 0; tid < num_threads; ++tid) {
138
    predictors.emplace_back(CreateTestPredictor(config, use_analysis));
L
luotao1 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  }
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<std::vector<PaddleTensor>> inputs_tid = inputs;
      std::vector<PaddleTensor> outputs_tid;
      Timer timer;
      timer.tic();
      for (int i = 0; i < num_times; i++) {
        for (size_t j = 0; j < inputs_tid.size(); j++) {
          predictors[tid]->Run(inputs_tid[j], &outputs_tid);
        }
      }
      PrintTime(batch_size, num_times, num_threads, tid,
                timer.toc() / num_times, inputs_tid.size());
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

162 163
void TestPrediction(const AnalysisConfig &config,
                    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
164 165
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
T
Tao Luo 已提交
166 167
  LOG(INFO) << "use_analysis: " << use_analysis
            << ", use_mkldnn: " << config._use_mkldnn;
L
luotao1 已提交
168
  if (num_threads == 1) {
T
Tao Luo 已提交
169
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
170
  } else {
T
Tao Luo 已提交
171 172
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
173 174 175
  }
}

T
Tao Luo 已提交
176
void CompareNativeAndAnalysis(
177 178
    const AnalysisConfig &config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
T
Tao Luo 已提交
179
  LOG(INFO) << "use_mkldnn: " << config._use_mkldnn;
T
Tao Luo 已提交
180 181 182 183 184 185
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

L
luotao1 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
    if (a.type() == typeid(float)) {
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    } else if (a.type() == typeid(int64_t)) {
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
308 309
}  // namespace inference
}  // namespace paddle