pool2d_op.cc 4.5 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
 */
class Pool2dOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    VLOG(4)
        << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
N
nhzlx 已提交
32 33
    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);
N
nhzlx 已提交
34
    auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
N
nhzlx 已提交
35

N
nhzlx 已提交
36
    bool global_pooling = boost::get<bool>(op_desc.GetAttr("global_pooling"));
N
nhzlx 已提交
37 38 39 40 41 42 43 44
    std::string pool_type =
        boost::get<std::string>(op_desc.GetAttr("pooling_type"));
    std::vector<int> ksize =
        boost::get<std::vector<int>>(op_desc.GetAttr("ksize"));
    std::vector<int> strides =
        boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
    std::vector<int> paddings =
        boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));
45
    bool ceil_mode = boost::get<bool>(op_desc.GetAttr("ceil_mode"));
N
nhzlx 已提交
46

47 48
    nvinfer1::Dims input_shape = input1->getDimensions();
    int nbDims = input_shape.nbDims;
N
nhzlx 已提交
49
    nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
50 51 52
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

N
nhzlx 已提交
53 54 55
    if (global_pooling == true) {
      nv_ksize.d[0] = input_shape.d[nbDims - 2];
      nv_ksize.d[1] = input_shape.d[nbDims - 1];
56 57 58 59
      nv_strides.h() = 1;
      nv_strides.w() = 1;
      nv_paddings.h() = 0;
      nv_paddings.w() = 0;
N
nhzlx 已提交
60
    }
N
nhzlx 已提交
61

62 63
    PADDLE_ENFORCE_EQ(input1->getDimensions().nbDims, 3UL);

N
nhzlx 已提交
64
    nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
N
nhzlx 已提交
65
    if (pool_type == "max") {
N
nhzlx 已提交
66
      nv_pool_type = nvinfer1::PoolingType::kMAX;
N
nhzlx 已提交
67
    } else if (pool_type == "avg") {
N
nhzlx 已提交
68
      nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
N
nhzlx 已提交
69 70 71 72
    } else {
      PADDLE_THROW("TensorRT unsupported pooling type!");
    }

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    if (ceil_mode) {
      nvinfer1::DimsHW pre_pad(0, 0);
      nvinfer1::DimsHW post_pad(0, 0);
      int input_height = input_shape.d[nbDims - 2];
      int input_width = input_shape.d[nbDims - 1];
      int floor_h_output_size =
          (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
      int ceil_h_output_size =
          (input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
              strides[0] +
          1;

      int floor_w_output_size =
          (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
      int ceil_w_output_size =
          (input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) /
              strides[1] +
          1;
      if (floor_h_output_size != ceil_h_output_size) {
        post_pad.h() = strides[0] - 1;
      }

      if (floor_w_output_size != ceil_w_output_size) {
        post_pad.w() = strides[1] - 1;
      }
      auto* layer = TRT_ENGINE_ADD_LAYER(
          engine_, Padding, *const_cast<nvinfer1::ITensor*>(input1), pre_pad,
          post_pad);
      input1 = layer->getOutput(0);
    }
N
nhzlx 已提交
103 104
    auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling,
                                       *const_cast<nvinfer1::ITensor*>(input1),
N
nhzlx 已提交
105
                                       nv_pool_type, nv_ksize);
N
nhzlx 已提交
106 107 108 109 110
    PADDLE_ENFORCE_NOT_NULL(layer, "pool layer could not be created.");
    layer->setStride(nv_strides);
    layer->setPadding(nv_paddings);

    auto output_name = op_desc.Output("Out")[0];
111 112
    layer->setName(("pool2d (Output: " + output_name + ")").c_str());
    layer->getOutput(0)->setName(output_name.c_str());
N
nhzlx 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125
    engine_->SetITensor(output_name, layer->getOutput(0));
    if (test_mode) {
      engine_->DeclareOutput(output_name);
    }
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);