test_primapi.py 21.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import typing
import unittest

import numpy as np
import paddle

21 22 23
import autograd
import autograd.numpy as anp
import autograd.scipy as ascipy
24 25 26 27
import config
import utils


L
levi131 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
@utils.place(config.DEVICES)
@utils.parameterize(
    (utils.TEST_CASE_NAME, 'fun', 'xs', 'v', 'dtype'),
    (('matmul', paddle.matmul,
      (np.random.rand(2, 3), np.random.rand(3, 2)), None, 'float32'), ))
class TestWithoutProgramGuard(unittest.TestCase):

    @classmethod
    def setUpClass(cls):
        cls.xs = tuple(x.astype(cls.dtype) for x in cls.xs)
        cls._rtol = config.TOLERANCE.get(str(
            cls.dtype)).get("first_order_grad").get("rtol")
        cls._atol = config.TOLERANCE.get(str(
            cls.dtype)).get("first_order_grad").get("atol")

    def setUp(self):
        paddle.enable_static()
        paddle.incubate.autograd.enable_prim()

    def tearDown(self):
        paddle.incubate.autograd.disable_prim()
        paddle.disable_static()

    def test_forward_grad_without_program_guard(self):

        def with_program_guard():
            paddle.incubate.autograd.enable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
                    self.xs, self.v, stop_gradient=False)
                ys = self.fun(*static_xs) if isinstance(
                    static_xs, typing.Sequence) else self.fun(static_xs)
                ys_grad = paddle.incubate.autograd.forward_grad(
                    ys, static_xs, static_v)
                paddle.incubate.autograd.prim2orig(mp.block(0))
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.disable_prim()
            return out

        def without_program_guard():
            paddle.incubate.autograd.enable_prim()
            feed, static_xs, static_v = utils.gen_static_data_and_feed(
                self.xs, self.v, stop_gradient=False)
            ys = self.fun(*static_xs) if isinstance(
                static_xs, typing.Sequence) else self.fun(static_xs)
            ys_grad = paddle.incubate.autograd.forward_grad(
                ys, static_xs, static_v)
            sp = paddle.fluid.framework.default_startup_program()
            mp = paddle.fluid.framework.default_main_program()
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.disable_prim()
            return out

        expected = with_program_guard()
        actual = without_program_guard()
        self.assertEqual(type(actual), type(expected))
        np.testing.assert_allclose(np.concatenate(actual),
                                   np.concatenate(expected),
                                   rtol=self._rtol,
                                   atol=self._atol)

    def test_grad_without_program_guard(self):

        def with_program_guard():
            paddle.incubate.autograd.enable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
                    self.xs, self.v, stop_gradient=False)
                ys = self.fun(*static_xs) if isinstance(
                    static_xs, typing.Sequence) else self.fun(static_xs)
                xs_grad = paddle.incubate.autograd.grad(ys, static_xs, static_v)
                paddle.incubate.autograd.prim2orig(mp.block(0))
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=xs_grad)
            paddle.incubate.autograd.disable_prim()
            return out

        def without_program_guard():
            paddle.incubate.autograd.enable_prim()
            feed, static_xs, static_v = utils.gen_static_data_and_feed(
                self.xs, self.v, stop_gradient=False)
            ys = self.fun(*static_xs) if isinstance(
                static_xs, typing.Sequence) else self.fun(static_xs)
            xs_grad = paddle.incubate.autograd.grad(ys, static_xs, static_v)
            sp = paddle.fluid.framework.default_startup_program()
            mp = paddle.fluid.framework.default_main_program()
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=xs_grad)
            paddle.incubate.autograd.disable_prim()
            return out

        expected = with_program_guard()
        actual = without_program_guard()
        for i, j in zip(actual, expected):
            self.assertEqual(type(i), type(j))
            np.testing.assert_allclose(np.concatenate(i),
                                       np.concatenate(j),
                                       rtol=self._rtol,
                                       atol=self._atol)


139
@utils.place(config.DEVICES)
140 141 142 143 144 145 146 147 148 149 150 151
@utils.parameterize((utils.TEST_CASE_NAME, 'fun', 'xs', 'v', 'dtype'), (
    ('matmul', paddle.matmul,
     (np.random.rand(2, 3), np.random.rand(3, 2)), None, 'float32'),
    ('multiply', paddle.multiply,
     (np.random.rand(2, 3), np.random.rand(2, 3)), None, 'float64'),
    ('add', paddle.add,
     (np.random.rand(2, 3), np.random.rand(2, 3)), None, 'float32'),
    ('input_not_sequence', paddle.tanh,
     (np.random.rand(5, 5), ), None, 'float64'),
    ('input_gradients_not_none', paddle.matmul,
     (np.random.rand(3, 3), np.random.rand(3, 3)),
     (np.random.rand(3, 3), np.random.rand(3, 3)), 'float64'),
152
    ('log', paddle.log, (np.random.rand(3, 4), ), None, 'float32'),
153 154
    ('abs', paddle.abs, (np.random.uniform(-10, 10,
                                           (10, 10)), ), None, 'float32'),
155
))
156
# paddle.where, paddle.pow, paddle.maximum has no double grad definition,
157
# can not compute forward grad use double trick
158
class TestForwardGrad(unittest.TestCase):
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

    @classmethod
    def setUpClass(cls):
        cls.xs = tuple(x.astype(cls.dtype) for x in cls.xs)
        cls._rtol = config.TOLERANCE.get(str(
            cls.dtype)).get("first_order_grad").get("rtol")
        cls._atol = config.TOLERANCE.get(str(
            cls.dtype)).get("first_order_grad").get("atol")

    def setUp(self):
        paddle.enable_static()
        paddle.incubate.autograd.enable_prim()

    def tearDown(self):
        paddle.incubate.autograd.disable_prim()
        paddle.disable_static()

176
    def test_forward_grad(self):
177 178 179 180 181 182 183 184

        def expected():
            paddle.incubate.autograd.disable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
                    self.xs, self.v, stop_gradient=False)
185 186
                _, ys_grad = paddle.incubate.autograd.jvp(
                    self.fun, static_xs, static_v)
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.enable_prim()
            return out

        def actual():
            paddle.incubate.autograd.enable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
                    self.xs, self.v, stop_gradient=False)
                ys = self.fun(*static_xs) if isinstance(
                    static_xs, typing.Sequence) else self.fun(static_xs)
202 203
                ys_grad = paddle.incubate.autograd.forward_grad(
                    ys, static_xs, static_v)
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
                paddle.incubate.autograd.prim2orig(mp.block(0))
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.disable_prim()
            return out

        actual = actual()
        expected = expected()
        self.assertEqual(type(actual), type(expected))
        np.testing.assert_allclose(np.concatenate(actual),
                                   np.concatenate(expected),
                                   rtol=self._rtol,
                                   atol=self._atol)

    def test_prim_disabled(self):
        paddle.incubate.autograd.disable_prim()
        sp = paddle.static.Program()
        mp = paddle.static.Program()
        with self.assertRaises(RuntimeError):
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
                    self.xs, self.v, stop_gradient=False)
                ys = self.fun(*static_xs) if isinstance(
                    static_xs, typing.Sequence) else self.fun(static_xs)
229 230
                ys_grad = paddle.incubate.autograd.forward_grad(
                    ys, static_xs, static_v)
231 232 233 234 235 236 237 238 239
                paddle.incubate.autograd.prim2orig(mp.block(0))
            exe = paddle.static.Executor()
            exe.run(sp)
            exe.run(mp, feed=feed, fetch_list=ys_grad)
        paddle.incubate.autograd.enable_prim()

    def test_illegal_param(self):
        paddle.incubate.autograd.enable_prim()
        with self.assertRaises(TypeError):
240 241
            paddle.incubate.autograd.forward_grad(
                1, paddle.static.data('inputs', shape=[1]))
242 243

        with self.assertRaises(TypeError):
244 245
            paddle.incubate.autograd.forward_grad(
                paddle.static.data('targets', shape=[1]), 1)
246 247 248
        paddle.incubate.autograd.disable_prim()


249 250 251
where_wrap = lambda x, y: paddle.where(paddle.eye(3, 4) == 1, x, y)


252
@utils.place(config.DEVICES)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
@utils.parameterize(
    (utils.TEST_CASE_NAME, 'fun', 'xs', 'v', 'dtype'),
    (
        ('matmul', paddle.matmul,
         (np.random.rand(2, 3), np.random.rand(3, 2)), None, 'float32'),
        ('multiply', paddle.multiply,
         (np.random.rand(2, 3), np.random.rand(2, 3)), None, 'float64'),
        ('add', paddle.add,
         (np.random.rand(2, 3), np.random.rand(2, 3)), None, 'float32'),
        ('input_not_sequence', paddle.tanh,
         (np.random.rand(5, 5), ), None, 'float64'),
        ('input_gradients_not_none', paddle.matmul,
         (np.random.rand(3, 3), np.random.rand(3, 3)),
         (np.random.rand(3, 3), ), 'float64'),
        ('sin', paddle.sin, (np.random.rand(100, 200), ), None, 'float32'),
        ('cos', paddle.cos, (np.random.rand(200, 90), ), None, 'float32'),
        ('exp', paddle.exp, (np.random.rand(299, 320), ), None, 'float32'),
        # In where op, grad of condition computed by paddle.static.gradients is None,
        # and paddle.incubate.autograd.grad will replace None with zeros while transpose
        # will just return None because cond_dot is unused, that is a diff.
        ('select', where_wrap,
         (np.random.rand(3, 4), np.random.rand(3, 4)), None, 'float32'),
        # pow_p and pow has diff when compute z_dot of 0^0
        ('pow', paddle.pow,
         (np.array([1, 2, 3]), np.array([0, 2, 7])), None, 'float32'),
278 279 280 281 282
        # To make max_p consistent with paddle.maximum, be sure x.grad = 0 and y.grad = 1 when x==y.
        ('max', paddle.maximum, (
            np.array([1, 2, 3]),
            np.array([2, 2, 2]),
        ), None, 'float32'),
283 284 285 286 287
        ('erf', paddle.erf, (np.random.rand(300, 288), ), None, 'float32'),
        ('gelu', paddle.nn.functional.gelu,
         (np.random.rand(200, 189), ), None, 'float32'),
        ('gelu_approximate', lambda x: paddle.nn.functional.gelu(x, True),
         (np.random.rand(200, 189), ), None, 'float32'),
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        ('sum', paddle.sum, (np.random.rand(200, 345), ), None, 'float32'),
        ('sum_with_axis', lambda x: paddle.sum(x, axis=1),
         (np.random.rand(200, 345), ), None, 'float32'),
        ('sum_with_keepdim', lambda x: paddle.sum(x, keepdim=True),
         (np.random.rand(200, 345), ), None, 'float32'),
        ('mean', paddle.mean, (np.random.rand(200, 345), ), None, 'float32'),
        ('mean_with_axis', lambda x: paddle.mean(x, axis=1),
         (np.random.rand(200, 345), ), None, 'float32'),
        ('mean_with_keepdim', lambda x: paddle.mean(x, keepdim=True),
         (np.random.rand(200, 345), ), None, 'float32'),
        ('mean_with_axis_keepdim',
         lambda x: paddle.mean(x, axis=0, keepdim=True),
         (np.random.rand(200, 345), ), None, 'float32'),
        ('abs', paddle.abs, (np.random.uniform(-10, 10,
                                               (200, 345)), ), None, 'float32'),
303
    ))
304 305
class TestGrad(unittest.TestCase):

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    def setUp(self):
        paddle.enable_static()
        paddle.incubate.autograd.enable_prim()

    def tearDown(self):
        paddle.incubate.autograd.disable_prim()
        paddle.disable_static()

    @classmethod
    def setUpClass(cls):
        cls.xs = tuple(x.astype(cls.dtype) for x in cls.xs)
        cls._rtol = config.TOLERANCE.get(str(
            cls.dtype)).get("first_order_grad").get("rtol")
        cls._atol = config.TOLERANCE.get(str(
            cls.dtype)).get("first_order_grad").get("atol")

    def test_grad(self):

        def expected():
            paddle.incubate.autograd.disable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
                    self.xs, self.v, stop_gradient=False)
                _, ys_grad = paddle.incubate.autograd.vjp(
                    self.fun, static_xs, static_v)
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.enable_prim()
            return out

        def actual():
            paddle.incubate.autograd.enable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
                    self.xs, self.v, stop_gradient=False)
                ys = self.fun(*static_xs) if isinstance(
                    static_xs, typing.Sequence) else self.fun(static_xs)
                ys_grad = paddle.incubate.autograd.grad(ys, static_xs, static_v)
                paddle.incubate.autograd.prim2orig(mp.block(0))
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.disable_prim()
            return out

        actual = actual()
        expected = expected()
        self.assertEqual(type(actual), type(expected))
        for i, j in zip(actual, expected):
            np.testing.assert_allclose(i, j, rtol=self._rtol, atol=self._atol)

    def test_illegal_param(self):
        paddle.incubate.autograd.enable_prim()
        with self.assertRaises(TypeError):
            paddle.incubate.autograd.grad(
                1, paddle.static.data('inputs', shape=[1]))

        with self.assertRaises(TypeError):
            paddle.incubate.autograd.grad(
                paddle.static.data('targets', shape=[1]), 1)
        paddle.incubate.autograd.disable_prim()

    def test_disable_prim(self):

        def expected():
            paddle.incubate.autograd.disable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
                    self.xs, self.v, stop_gradient=False)
                ys = self.fun(*static_xs) if isinstance(
                    static_xs, typing.Sequence) else self.fun(static_xs)
                ys_grad = paddle.incubate.autograd.grad(ys, static_xs, static_v)
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.enable_prim()
            return out

        def actual():
            paddle.incubate.autograd.disable_prim()
            sp = paddle.static.Program()
            mp = paddle.static.Program()
            with paddle.static.program_guard(mp, sp):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
                    self.xs, self.v, stop_gradient=False)
                ys = self.fun(*static_xs) if isinstance(
                    static_xs, typing.Sequence) else self.fun(static_xs)
                ys_grad = paddle.static.gradients(ys, static_xs, static_v)
            exe = paddle.static.Executor()
            exe.run(sp)
            out = exe.run(mp, feed=feed, fetch_list=ys_grad)
            paddle.incubate.autograd.enable_prim()
            return out

        actual = actual()
        expected = expected()
        self.assertEqual(type(actual), type(expected))
        for i, j in zip(actual, expected):
            np.testing.assert_allclose(i, j, rtol=self._rtol, atol=self._atol)


414 415 416 417 418 419 420 421
def multiply_pd(x):
    x2 = paddle.multiply(x, x)
    x3 = paddle.multiply(x2, x2)
    x4 = paddle.multiply(x3, x)
    return x4


multiply_ag = lambda xs: xs[0] * xs[0] * xs[0] * xs[0] * xs[0]
422 423 424
sin_ag = lambda xs: anp.sin(xs[0])
cos_ag = lambda xs: anp.cos(xs[0])
exp_ag = lambda xs: anp.exp(xs[0])
425
pow_ag = lambda xs: xs[0]**xs[1]
426 427 428 429 430 431 432 433 434 435 436
log_ag = lambda xs: anp.log(xs[0])
erf_ag = lambda xs: ascipy.special.erf(xs[0])


def gelu_ag(x, approximate=False):
    if approximate:
        sqrt_2_over_pi = np.sqrt(2 / np.pi).astype(x.dtype)
        cdf = 0.5 * (1.0 + anp.tanh(sqrt_2_over_pi * (x + 0.044715 * (x**3))))
        return x * cdf
    else:
        return x * (ascipy.special.erf(x / np.sqrt(2)) + 1) / 2
437 438 439 440


@utils.place(config.DEVICES)
@utils.parameterize(
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
    (utils.TEST_CASE_NAME, 'fun_pd', 'fun_ag', 'xs', 'v', 'dtype'),
    (('multiply', multiply_pd, multiply_ag,
      (np.random.rand(3, 5), ), None, 'float32'),
     ('sin', paddle.sin, sin_ag, (np.random.rand(2, 3), ), None, 'float32'),
     ('cos', paddle.cos, cos_ag, (np.random.rand(3, 4), ), None, 'float32'),
     ('exp', paddle.exp, exp_ag, (np.random.rand(2, 3), ), None, 'float32'),
     ('pow', paddle.pow, pow_ag,
      (np.random.rand(2, 3), np.random.rand(2, 3)), None, 'float32'),
     ('log', paddle.log, log_ag, (np.random.rand(3, 8), ), None, 'float32'),
     ('erf', paddle.erf, erf_ag, (np.random.rand(100, 200), ), None, 'float32'),
     ('gelu', paddle.nn.functional.gelu, lambda xs: gelu_ag(xs[0]),
      (np.random.rand(10, 20, 30), ), None, 'float32'),
     ('gelu_approximate',
      lambda x: paddle.nn.functional.gelu(x, approximate=True),
      lambda xs: gelu_ag(xs[0], approximate=True),
      (np.random.rand(10, 20, 30), ), None, 'float32')))
457 458
class TestGradWithHigherOrder(unittest.TestCase):

459 460 461 462 463 464 465 466
    def setUp(self):
        paddle.enable_static()
        paddle.incubate.autograd.enable_prim()

    def tearDown(self):
        paddle.incubate.autograd.disable_prim()
        paddle.disable_static()

467 468 469 470 471 472 473
    @classmethod
    def setUpClass(cls):
        cls.xs = tuple(x.astype(cls.dtype) for x in cls.xs)
        cls._rtol = config.TOLERANCE.get(str(
            cls.dtype)).get("first_order_grad").get("rtol")
        cls._atol = config.TOLERANCE.get(str(
            cls.dtype)).get("first_order_grad").get("atol")
474

475
    def test_grad(self):
L
levi131 已提交
476

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        def expected():
            egrad = autograd.elementwise_grad
            grad_3 = egrad(egrad(egrad(self.fun_ag)))(self.xs)
            grad_4 = egrad(egrad(egrad(egrad(self.fun_ag))))(self.xs)
            grad_5 = egrad(egrad(egrad(egrad(egrad(self.fun_ag)))))(self.xs)
            # the output of egrad is tuple
            return list(grad_3 + grad_4 + grad_5)

        def actual():
            paddle_grad = paddle.incubate.autograd.grad
            paddle.incubate.autograd.enable_prim()
            main = paddle.static.Program()
            startup = paddle.static.Program()
            with paddle.static.program_guard(main, startup):
                feed, static_xs, static_v = utils.gen_static_data_and_feed(
                    self.xs, self.v, stop_gradient=False)
                ys = self.fun_pd(*static_xs) if isinstance(
                    static_xs, typing.Sequence) else self.fun_pd(static_xs)

                grad1 = paddle_grad(ys, static_xs, static_v)
                grad2 = paddle_grad(grad1, static_xs, static_v)
                grad3 = paddle_grad(grad2, static_xs, static_v)
                grad4 = paddle_grad(grad3, static_xs, static_v)
                grad5 = paddle_grad(grad4, static_xs, static_v)
                paddle.incubate.autograd.prim2orig()

            fetch_list = [grad3, grad4, grad5]

            place = paddle.CPUPlace()
            if paddle.device.is_compiled_with_cuda():
                place = paddle.CUDAPlace(0)
            exe = paddle.static.Executor(place)
            exe.run(startup)
            outs = exe.run(main, feed=feed, fetch_list=fetch_list)
            paddle.incubate.autograd.disable_prim()
            return outs

        actual = actual()
        expected = expected()
        self.assertEqual(type(actual), type(expected))
        for i, j in zip(actual, expected):
            np.testing.assert_allclose(i, j, rtol=self._rtol, atol=self._atol)
519 520


521 522
if __name__ == '__main__':
    unittest.main()