index_sample_grad_kernel.cu 5.5 KB
Newer Older
S
seemingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/index_sample_grad_kernel.h"

#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

namespace {
template <typename Context>
void LimitGridDim(const Context& ctx, dim3* grid_dim) {
  auto max_grid_dim =
      reinterpret_cast<const phi::GPUContext&>(ctx).GetCUDAMaxGridDimSize();
  grid_dim->x = grid_dim->x < max_grid_dim[0] ? grid_dim->x : max_grid_dim[0];
  grid_dim->y = grid_dim->y < max_grid_dim[1] ? grid_dim->y : max_grid_dim[1];
}
#define PREDEFINED_BLOCK_SIZE_X 512
#define PREDEFINED_BLOCK_SIZE 1024
#define MIN(a, b) ((a) < (b) ? (a) : (b))
H
hong 已提交
39
}  // namespace
S
seemingwang 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

template <typename T, typename IndexT = int>
__global__ void IndexSampleGrad(const IndexT* index,
                                T* in_grad,
                                const T* out_grad,
                                size_t index_length,
                                size_t input_length,
                                size_t batch_size,
                                bool same_data_in_row = true) {
  unsigned int index_i = blockDim.x * blockIdx.x + threadIdx.x;
  unsigned int index_j = blockDim.y * blockIdx.y + threadIdx.y;

  for (; index_j < batch_size; index_j += blockDim.y * gridDim.y) {
    index_i = blockDim.x * blockIdx.x + threadIdx.x;
    for (; index_i < index_length; index_i += blockDim.x * gridDim.x) {
      unsigned int index_idx = index_j * index_length + index_i;
      unsigned int in_idx = index_j * input_length + index_i;
      IndexT sample_idx = index[index_idx];
      if (same_data_in_row) {
        paddle::platform::CudaAtomicAdd(
            &(in_grad[in_idx - index_i + sample_idx]), out_grad[sample_idx]);
      } else {
        in_grad[in_idx - index_i + sample_idx] = out_grad[index_idx];
      }
    }
  }
}

template <typename T, typename Context>
void IndexSampleGradKernel(const Context& ctx,
                           const DenseTensor& x,
                           const DenseTensor& index,
H
hong 已提交
72
                           const DenseTensor& out_grad,
S
seemingwang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
                           DenseTensor* x_grad) {
  const T* output_grad_data = out_grad.data<T>();
  T* input_grad_data = ctx.template Alloc<T>(x_grad);
  auto index_type = index.dtype();
  bool index_type_match =
      index_type == DataType::INT32 || index_type == DataType::INT64;
  PADDLE_ENFORCE_EQ(
      index_type_match,
      true,
      errors::InvalidArgument(
          "Input(Index) holds the wrong type, it holds %s, but "
          "desires to be %s or %s",
          paddle::framework::DataTypeToString(
              paddle::framework::TransToProtoVarType(index_type)),
          paddle::framework::DataTypeToString(
              paddle::framework::TransToProtoVarType(DataType::INT32)),
          paddle::framework::DataTypeToString(
              paddle::framework::TransToProtoVarType((DataType::INT64)))));

  auto stream = reinterpret_cast<const phi::GPUContext&>(ctx).stream();
  auto input_num = x.numel();
  auto input_dim = x.dims();
  auto index_dim = index.dims();
  size_t batch_size = index_dim[0];
  size_t input_length = input_dim[1];
  size_t index_length = index_dim[1];
  bool same_data_in_index_row = index_length == 1 ? false : true;

  auto block_width = paddle::platform::RoundToPowerOfTwo(index_length);
  block_width = MIN(block_width, PREDEFINED_BLOCK_SIZE_X);
  auto block_height =
      paddle::platform::RoundToPowerOfTwo(index_length * batch_size) /
      block_width;
  block_height = MIN(block_height, PREDEFINED_BLOCK_SIZE / block_width);
  dim3 block_dim(block_width, block_height);
  dim3 grid_dim((index_length + block_dim.x - 1) / block_dim.x,
                (batch_size + block_dim.y - 1) / block_dim.y);
  LimitGridDim(ctx, &grid_dim);

  phi::funcs::SetConstant<Context, T> set_zero;
  set_zero(ctx, x_grad, static_cast<T>(0));

  if (index_type == DataType::INT64) {
    const int64_t* index_data = index.data<int64_t>();
    IndexSampleGrad<T, int64_t><<<grid_dim, block_dim, 0, stream>>>(
        index_data,
        input_grad_data,
        output_grad_data,
        index_length,
        input_length,
        batch_size,
        same_data_in_index_row);
  } else if (index_type == DataType::INT32) {
    const int* index_data = index.data<int>();
    IndexSampleGrad<T, int><<<grid_dim, block_dim, 0, stream>>>(
        index_data,
        input_grad_data,
        output_grad_data,
        index_length,
        input_length,
        batch_size,
        same_data_in_index_row);
  }
}
}  // namespace phi

PD_REGISTER_KERNEL(index_sample_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::IndexSampleGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}