layers_test_config.py 2.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

num_classes = 5

x = data_layer(name="input1", size=3)
y = data_layer(name="input2", size=5)

H
Haonan 已提交
22 23
z = out_prod_layer(input1=x, input2=y)

24 25
x1 = fc_layer(input=x, size=5)
y1 = fc_layer(input=y, size=5)
26 27 28 29 30 31

z1 = mixed_layer(act=LinearActivation(),
                 input=[conv_operator(img=x1,
                                      filter=y1,
                                      filter_size=1,
                                      num_filters=5,
32
                                      num_channels=5,
33 34
                                      stride=1)])

35 36
assert z1.size > 0

37 38 39 40 41 42 43
y2 = fc_layer(input=y, size=15)

cos1 = cos_sim(a=x1, b=y1)
cos3 = cos_sim(a=x1, b=y2, size=3)

linear_comb = linear_comb_layer(weights=x1, vectors=y2, size=3)

44
out = fc_layer(input=[cos1, cos3, linear_comb, z, z1],
45 46 47
               size=num_classes,
               act=SoftmaxActivation())

48 49
print_layer(input=[out])

50 51
outputs(classification_cost(out, data_layer(name="label", size=num_classes)))

52
dotmul = mixed_layer(input=[dotmul_operator(a=x1, b=x1),
53 54 55 56 57 58 59 60 61 62 63
                            dotmul_projection(input=y1)])

proj_with_attr_init = mixed_layer(input=full_matrix_projection(input=y1,
                                                               param_attr=ParamAttr(learning_rate = 0,
                                                                                 initial_mean = 0,
                                                                                 initial_std = 0)),
                               bias_attr = ParamAttr(initial_mean=0, initial_std=0, learning_rate=0),
                               act = LinearActivation(),
                               size = 5,
                               name='proj_with_attr_init')

64

65
# for ctc
66
tmp = fc_layer(input=[x1, dotmul, proj_with_attr_init],
67 68 69 70 71
               size=num_classes + 1,
               act=SoftmaxActivation())
ctc = ctc_layer(input=tmp,
                label=y,
                size=num_classes + 1)
E
emailweixu 已提交
72
ctc_eval = ctc_error_evaluator(input=tmp, label=y)
73

74 75 76 77 78 79 80
settings(
    batch_size=10,
    learning_rate=2e-3,
    learning_method=AdamOptimizer(),
    regularization=L2Regularization(8e-4),
    gradient_clipping_threshold=25
)