cross_entropy_op.cc 6.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/cross_entropy_op.h"

namespace paddle {
namespace operators {

20
class CrossEntropyOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
 protected:
D
dongzhihong 已提交
25
  void InferShape(const framework::InferShapeContext &ctx) const override {
26
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
27
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
                            "Input(Label) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Y"), "Output(Y) must not be null.");

    auto x = ctx.Input<Tensor>("X");
    auto label = ctx.Input<Tensor>("Label");
    PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(label->dims().size(), 2,
                      "Input(Label)'s rank must be 2.");
    // TODO(xinghai-sun): remove this check after swtiching to bool
    PADDLE_ENFORCE(ctx.Attr<int>("soft_label") == 0 ||
                   ctx.Attr<int>("soft_label") == 1);
    PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
                      "The 1st dimension of Input(X) and Input(Label) must "
                      "be equal.");
    if (ctx.Attr<int>("soft_label") == 1) {
      PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
                        "If Attr(soft_label) == 1, The 2nd dimension of "
                        "Input(X) and Input(Label) must be equal.");
46
    } else {
47 48 49
      PADDLE_ENFORCE_EQ(label->dims()[1], 1,
                        "If Attr(soft_label) == 0, The 2nd dimension of "
                        "Input(Label) must be 1.");
50
    }
51

D
dangqingqing 已提交
52
    ctx.Output<Tensor>("Y")->Resize({x->dims()[0], 1});
53
    ctx.ShareLoD("X", /*->*/ "Y");
Q
Qiao Longfei 已提交
54 55 56
  }
};

57
class CrossEntropyGradientOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
58 59 60
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

Y
Yan Chunwei 已提交
61
 protected:
D
dongzhihong 已提交
62
  void InferShape(const framework::InferShapeContext &ctx) const override {
63 64 65 66 67
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
                            "Input(Label) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Y")),
                            "Input(Y@GRAD) must not be null.");
68

69
    auto x = ctx.Input<Tensor>("X");
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    auto label = ctx.Input<Tensor>("Label");
    auto dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dy->dims().size(), 2, "Input(Y@Grad)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(label->dims().size(), 2,
                      "Input(Label)'s rank must be 2.");
    // TODO(xinghai-sun): remove this check after swtiching to bool
    PADDLE_ENFORCE(ctx.Attr<int>("soft_label") == 0 ||
                   ctx.Attr<int>("soft_label") == 1);
    PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
                      "The 1st dimension of Input(X) and Input(Label) must "
                      "be equal.");
    PADDLE_ENFORCE_EQ(x->dims()[0], dy->dims()[0],
                      "The 1st dimension of Input(X) and Input(Y@Grad) must "
                      "be equal.");
    PADDLE_ENFORCE_EQ(dy->dims()[1], 1,
                      "The 2nd dimension of Input(Y@Grad) must be 1.");
    if (ctx.Attr<int>("soft_label") == 1) {
      PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
                        "If Attr(soft_label) == 1, The 2nd dimension of "
                        "Input(X) and Input(Label) must be equal.");
    } else {
      PADDLE_ENFORCE_EQ(label->dims()[1], 1,
                        "If Attr(soft_label) == 0, The 2nd dimension of "
                        "Input(Label) must be 1.");
    }
Y
Yan Chunwei 已提交
96

D
dangqingqing 已提交
97
    auto dx = ctx.Output<Tensor>(framework::GradVarName("X"));
98
    dx->Resize(x->dims());
Y
Yan Chunwei 已提交
99 100 101
  }
};

102
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
103
 public:
104 105
  CrossEntropyOpMaker(framework::OpProto *proto,
                      framework::OpAttrChecker *op_checker)
106
      : OpProtoAndCheckerMaker(proto, op_checker) {
107 108 109
    AddInput("X", "The first input of CrossEntropyOp");
    AddInput("Label", "The second input of CrossEntropyOp");
    AddOutput("Y", "The output of CrossEntropyOp");
110 111
    AddAttr<int>("soft_label", "Is soft label. Default zero.").SetDefault(0);

Q
Qiao Longfei 已提交
112
    AddComment(R"DOC(
113
CrossEntropy Operator.
Q
Qiao Longfei 已提交
114

115 116 117 118
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
    soft_label = 0, Label[i, 0] indicates the class index for sample i:
119

120
                Y[i] = -log(X[i, Label[i]])
Q
Qiao Longfei 已提交
121

122 123 124
2) Soft-label cross-entropy:
    soft_label = 1, Label[i, j] indicates the soft label of class j
    for sample i:
125

126
                Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
127

128
   Please make sure that in this case the summuation of each row of Label
129 130 131 132 133 134
   equals one.

3) One-hot cross-entropy with vecterized Input(Label):
     As a special case of 2), when each row of Input(Label) has only one
     non-zero element (equals 1), soft-label cross-entropy degenerates to a
     one-hot cross-entropy with one-hot label representation.
D
dangqingqing 已提交
135 136 137

Both the input `X` and `Label` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
Q
Qiao Longfei 已提交
138 139 140 141 142 143
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
144
namespace ops = paddle::operators;
145 146 147 148 149
REGISTER_OP(cross_entropy, ops::CrossEntropyOp, ops::CrossEntropyOpMaker,
            cross_entropy_grad, ops::CrossEntropyGradientOp);
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<float>);
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
                       ops::CrossEntropyGradientOpKernel<float>);