test_bert_cinn.py 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import unittest

import numpy as np
from bert import Bert, BertPretrainingCriterion, create_pretraining_dataset

import paddle
from paddle import fluid
from paddle.dataset.common import DATA_HOME, download
from paddle.fluid import core

SEED = 2023
BATCH_SIZE = 2

URL = 'https://paddle-ci.gz.bcebos.com/prim_cinn/bert_training_data.npz'
MODULE_NAME = 'test_bert_prim_cinn'
MD5SUM = '71e730ee8d7aa77a215b7e898aa089af'
SAVE_NAME = 'bert_training_data.npz'


DY2ST_CINN_GT = [
    10.649632453918457,
    10.333406448364258,
    10.33541202545166,
    10.260543823242188,
    10.219606399536133,
    10.176884651184082,
    10.124699592590332,
    10.072620391845703,
    10.112163543701172,
    9.969393730163574,
]


if core.is_compiled_with_cuda():
    paddle.set_flags({'FLAGS_cudnn_deterministic': True})


def train(to_static, enable_prim, enable_cinn):
    if core.is_compiled_with_cuda():
        paddle.set_device('gpu')
    else:
        paddle.set_device('cpu')
    fluid.core._set_prim_all_enabled(enable_prim)

    np.random.seed(SEED)
    paddle.seed(SEED)
    # paddle.framework.random._manual_program_seed(SEED)

    train_data_loader = create_pretraining_dataset(
        os.path.join(DATA_HOME, MODULE_NAME, SAVE_NAME),
        20,
        {},
        batch_size=BATCH_SIZE,
        worker_init=None,
    )

    # Now only apply dy2st for encoder
    bert = Bert(to_static, enable_cinn)
    criterion = BertPretrainingCriterion()

    optimizer = fluid.optimizer.Adam(parameter_list=bert.parameters())

    losses = []
    for step, batch in enumerate(train_data_loader):
        start_time = time.time()
        (
            input_ids,
            segment_ids,
            input_mask,
            masked_lm_positions,
            masked_lm_labels,
            next_sentence_labels,
            masked_lm_scale,
        ) = batch

        prediction_scores, seq_relationship_score = bert(
            input_ids=input_ids,
            token_type_ids=segment_ids,
            attention_mask=input_mask,
            masked_positions=masked_lm_positions,
        )

        loss = criterion(
            prediction_scores,
            seq_relationship_score,
            masked_lm_labels,
            next_sentence_labels,
            masked_lm_scale,
        )

        loss.backward()
        optimizer.minimize(loss)
        bert.clear_gradients()
        losses.append(loss.numpy().item())

        print(
            "step: {}, loss: {}, batch_cost: {:.5}".format(
                step,
                loss.numpy(),
                time.time() - start_time,
            )
        )
        if step >= 9:
            break
    print(losses)
    return losses


class TestBert(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        download(URL, MODULE_NAME, MD5SUM, SAVE_NAME)

    def tearDown(self):
        paddle.set_flags({'FLAGS_deny_cinn_ops': ''})

    @unittest.skipIf(
        not (paddle.is_compiled_with_cinn() and paddle.is_compiled_with_cuda()),
        "paddle is not compiled with CINN and CUDA",
    )
    def test_cinn(self):
        paddle.set_flags({'FLAGS_deny_cinn_ops': "dropout"})
        dy2st_cinn = train(to_static=True, enable_prim=False, enable_cinn=True)
        np.testing.assert_allclose(dy2st_cinn, DY2ST_CINN_GT, rtol=1e-5)


if __name__ == '__main__':
    unittest.main()