reduce_function.h 39.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17 18
// CUDA, XPU and HIP use same api
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || defined(__xpu__)
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/fast_divmod.h"
#include "paddle/phi/api/ext/dispatch.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/utils/array.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
#include "paddle/utils/string/string_helper.h"

// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
#define REDUCE_VEC_SIZE 4

namespace kps = phi::kps;

namespace phi {
namespace funcs {

namespace details {

static inline int GetLastPow2(int n) {
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
  return std::max(1, n - (n >> 1));
}

static inline int64_t AlignUp(int64_t a, int64_t b) { return (a + b - 1) / b; }

// get strides of x_dim, reduce_dim and left_dim for reduceLastDim and reduceAny
static inline std::vector<int> GetDimStrides(const std::vector<int>& dims,
                                             const std::vector<int>& idx) {
  int n = static_cast<int>(idx.size());
  if (n == 0) return std::vector<int>();
  std::vector<int> strides(n);
  strides.back() = 1;
  for (int i = n - 2; i >= 0; --i) {
    strides[i] = strides[i + 1] * dims[idx[i + 1]];
  }
  return strides;
}

// get blockDim for reduceLastDim and reduceAny
static inline int GetBlockDim(int block_dim) {
  return block_dim >= kps::details::kReduceMaxThread
             ? kps::details::kReduceMaxThread
             : GetLastPow2(block_dim);
}

// check reduce rand is valid
static inline void CheckReduceRank(int reduce_rank, int rank) {
  if (rank % 2 == 0) {
    PADDLE_ENFORCE_EQ(reduce_rank,
                      rank / 2,
                      phi::errors::InvalidArgument(
                          "ReduceOp: invalid reduce rank. When rank = %d, "
                          "reduce_rank must be %d, but got %d.",
                          rank,
                          rank / 2,
                          reduce_rank));
  } else {
    auto lower_rank = (rank - 1) / 2;
    auto upper_rank = (rank + 1) / 2;
    PADDLE_ENFORCE_EQ(
        reduce_rank == lower_rank || reduce_rank == upper_rank,
        true,
        phi::errors::InvalidArgument(
            "ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
            "must be %d or %d, but got %d.",
            rank,
            lower_rank,
            upper_rank,
            reduce_rank));
  }
}

// convert dims from vector to array
template <typename T, size_t ElementCount, typename VectorLikeType>
static inline phi::Array<T, ElementCount> VectorToArray(
    const VectorLikeType& vec) {
  PADDLE_ENFORCE_LE(
      vec.size(),
      ElementCount,
      phi::errors::InvalidArgument("Cub reduce Array: size not match. Received "
                                   "vec.size() %d > ElementCount %d.",
                                   vec.size(),
                                   ElementCount));
  size_t n = static_cast<size_t>(vec.size());
  phi::Array<T, ElementCount> ret;
  for (size_t i = 0; i < n; ++i) {
    ret[i] = vec[i];
  }
  return ret;
}

static inline std::vector<int> GetReduceDim(const std::vector<int64_t>& dims,
                                            int dim_size,
                                            bool reduce_all) {
  std::vector<int> reduce_dims;
  if (reduce_all) {
    reduce_dims.resize(dim_size);
    int reduce_size = reduce_dims.size();
    for (int i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = i;
    }
  } else {
    for (auto e : dims) {
      PADDLE_ENFORCE_LT(e,
                        dim_size,
                        phi::errors::InvalidArgument(
                            "ReduceOp: invalid axis, when x_dims is %d, "
                            "axis[i] should less than x_dims, but got %d.",
                            dim_size,
                            e));
      reduce_dims.push_back(e >= 0 ? e : e + dim_size);
    }
  }
  return reduce_dims;
}

}  // namespace details

constexpr int kMaxRank = phi::DDim::kMaxRank;

enum ReduceType {
  kReduceLastDim = 0x01,    // when reduce_dim[0] == x_dim.size() - 1;
  kReduceHigherDim = 0x02,  // ReduceFirstDim or reduceSecondDim
  kReduceAny = 0x03,        // when reduce_dim.size() > 1
};

struct IndexCalculator {
  IndexCalculator(int dim,
                  const std::vector<int>& cal_dims,
                  const std::vector<int>& cal_strides,
                  const std::vector<int>& full_strides)
      : dim(dim) {
    dims = details::VectorToArray<int, kMaxRank>(cal_dims);
    strides = details::VectorToArray<int, kMaxRank>(full_strides);
    reduce_strides = details::VectorToArray<int, kMaxRank>(cal_strides);
#ifndef PADDLE_WITH_XPU_KP
    std::vector<paddle::platform::FastDivMod> cal_divmoders;
    // fast divmod
    for (auto i : cal_strides) {
      cal_divmoders.push_back(paddle::platform::FastDivMod(i));
    }
    divmoders = details::VectorToArray<paddle::platform::FastDivMod, kMaxRank>(
        cal_divmoders);
#endif
  }

  __device__ inline int operator()(int offset) const {
#ifdef PADDLE_WITH_XPU_KP
    int index = 0;
#pragma unroll
    for (int i = 0; i < kMaxRank; ++i) {
      if (i == dim) {
        break;
      }
      index += (offset / reduce_strides[i]) * strides[dims[i]];
      offset = offset % reduce_strides[i];
    }
    return index;
#else
    int index = 0;
#pragma unroll
    for (int i = 0; i < kMaxRank; ++i) {
      if (i == dim) {
        break;
      }
      auto divmod = divmoders[i].Divmod(offset);
      index += (divmod.val[0] * strides[dims[i]]);
      offset = divmod.val[1];
    }
    return index;
#endif
  }

  int dim;
  phi::Array<int, kMaxRank> dims;
  phi::Array<int, kMaxRank> strides;
  phi::Array<int, kMaxRank> reduce_strides;
223
#ifndef PADDLE_WITH_XPU_KP
224 225 226 227 228 229 230 231 232 233
  phi::Array<paddle::platform::FastDivMod, kMaxRank> divmoders;
#endif
};

template <bool ReduceLastDim = false>
struct ReduceIndexMapping {
  const kps::DimConfig dim;
  HOSTDEVICE explicit ReduceIndexMapping(const kps::DimConfig& dims)
      : dim(dims) {}

234
#ifdef PADDLE_WITH_XPU_KP
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  __device__ __forceinline__ int BlockIdX() {
    if (ReduceLastDim) {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    } else {
      return cluster_id() % dim.split_num_x;
    }
  }

  __device__ __forceinline__ int BlockIdY() {
    if (ReduceLastDim) {
      return (cluster_id() % dim.split_num_x);
    } else {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    }
  }

251
  __device__ __forceinline__ int BlockDimX() { return dim.deal_size_x; }
252

253
  __device__ __forceinline__ int BlockDimY() { return 1; }
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

  __device__ __forceinline__ int GridDimX() {
    if (ReduceLastDim) {
      return dim.split_num_y;
    } else {
      return dim.split_num_x;
    }
  }

  __device__ __forceinline__ int GridDimY() {
    if (ReduceLastDim) {
      return dim.split_num_x;
    } else {
      return dim.split_num_y;
    }
  }

  __device__ __forceinline__ int GetLoopSize() {
    if (ReduceLastDim) {
      return dim.deal_size_y;
    } else {
      return dim.deal_size_x;
    }
277
  }
278
#else
279 280 281 282 283 284 285 286 287 288 289 290 291
  __device__ __forceinline__ int BlockIdX() { return blockIdx.x; }

  __device__ __forceinline__ int BlockIdY() { return blockIdx.y; }

  __device__ __forceinline__ int BlockDimX() { return blockDim.x; }

  __device__ __forceinline__ int BlockDimY() { return blockDim.y; }

  __device__ __forceinline__ int GridDimX() { return gridDim.x; }

  __device__ __forceinline__ int GridDimY() { return gridDim.y; }

  __device__ int GetLoopSize() { return 1; }
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
#endif
};

// when reduce_type == kReduceLastDim this struct will be used
// for higher performance
struct OneDimIndexCal {
  explicit OneDimIndexCal(int num) : stride(num) {}

  __device__ inline int operator()(int index) const { return index * stride; }
  int stride;
};

// reduce config
template <typename Ty>
struct ReduceConfig {
  ReduceConfig(const std::vector<int>& origin_reduce_dims,
               const std::vector<int>& origin_x_dim)
      : reduce_dims_origin(origin_reduce_dims), x_dim(origin_x_dim) {}

  // get the parameters of reduceKernel
  void Run() {
    // step1: update the reduce_dim left_dim and x_dim
    SetReduceDim();

    // step2: get the strides of dim for reduceAny and reduceLastDim
    SetStrides();

    // step3: get the type of reduce
    SetReduceType();

    // step4: set the block and grid for launch kernel
    SetBlockDim();
  }

  // when should_reduce_again is true, we need malloc temp space for temp data
  void SetOutputData(Ty* y_data,
328
                     const KPDevice& dev_ctx,
329 330
                     phi::DenseTensor* tmp) {
    if (should_reduce_again) {
331
      tmp->Resize(phi::make_ddim(
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
          {static_cast<int64_t>(left_num * grid.z * grid.y * sizeof(Ty))}));
      output_data = dev_ctx.Alloc<Ty>(tmp);
    } else {
      output_data = y_data;
    }
  }

 private:
  // set reduce_dim, left_dim and update x_dim
  // eg: x_dim = [2, 4, 6] origin_reduce_dims = [0, 1]
  //     --SetReduceDim--> x_dim = [8,6], reduce_dim = [0], left_dim = [1]
  void SetReduceDim() {
    std::set<int> reduce_set;
    for (auto e : reduce_dims_origin) {
      auto pos = e >= 0 ? e : e + x_dim.size();
      reduce_set.insert(pos);
    }

    std::vector<int> reduce_dim_temp(reduce_set.begin(), reduce_set.end());
    std::sort(reduce_dim_temp.begin(), reduce_dim_temp.end());

    // update reduce_dim and x_dim
    std::vector<int> x_new_dim;

    reduce_dim.push_back(reduce_dim_temp[0]);
    x_new_dim.push_back(x_dim[0]);

    int idx_reduce = 1;
    int num = 0;

    if (reduce_dim_temp.size() > 1) {
      for (int i = 1; i < x_dim.size(); i++) {
        if ((idx_reduce < reduce_dim_temp.size()) &&
            (i == reduce_dim_temp[idx_reduce])) {
          int result =
              reduce_dim_temp[idx_reduce] - reduce_dim[reduce_dim.size() - 1];
          bool is_equal = ((result - num) == 1);
          if (is_equal) {
            x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
            num++;
          } else {
            reduce_dim.push_back(reduce_dim_temp[idx_reduce] - num);
            x_new_dim.push_back(x_dim[i]);
          }
          idx_reduce++;
        } else {
          x_new_dim.push_back(x_dim[i]);
        }
      }
    } else {
      x_new_dim = x_dim;
    }

    // update x_dim
    x_dim = x_new_dim;
    std::vector<int>().swap(x_new_dim);

    std::vector<int> reduce_dim_new;
    int is_reduced = 0;
    for (auto e : reduce_dim) {
      is_reduced |= 1 << e;
    }

    std::vector<int>().swap(reduce_dim);

    for (int i = 0; i < x_dim.size(); i++) {
      if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) {
        x_new_dim.push_back(x_dim[i]);
        if ((is_reduced >> i) & 1)
          reduce_dim_new.push_back(x_new_dim.size() - 1);
      } else {
        x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
      }
    }

    x_dim = x_new_dim;
    reduce_dim = reduce_dim_new;

    int x_rank = static_cast<int>(x_dim.size());
    std::set<int> left_set;

    for (int i = 0; i < x_rank; ++i) {
      left_set.insert(i);
    }

    for (auto e : reduce_dim) {
      left_set.erase(e);
    }

    left_dim.assign(left_set.begin(), left_set.end());

    // if the last dim gets involved in reduction
    reduce_last_dim = (reduce_dim.back() == x_dim.size() - 1);
  }

  // set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny
  // eg: x_dim = [8, 6], reduce_dim = [0], left_dim = [1]
  //     --SetStrides--> x_strides= [6,1], reduce_strides = [1],
  //     left_strides = [1]
  void SetStrides() {
    std::vector<int> idx_dim;
    for (int i = 0; i < x_dim.size(); i++) {
      idx_dim.push_back(i);
    }

    x_strides = details::GetDimStrides(x_dim, idx_dim);
    reduce_strides = details::GetDimStrides(x_dim, reduce_dim);
    left_strides = details::GetDimStrides(x_dim, left_dim);
    reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]];

    left_num = 1;
    if (left_dim.size()) {
      left_num = left_strides[0] * x_dim[left_dim[0]];
    }
  }

  // get the reduceType
  // eg: x_dim = [8, 6] reduce_dim = [0] --> ReduceHigherDim -->reduceFirstDim
  //     x_dim = [8, 6] reduce_dim = [1] --> reduceLastDim
  //     x_dim = [8] reduce_dim = [0] --> reduceAll
  //     x_dim = [8, 6, 4, 2] reduce_dim = [0, 2] --> reduceAny
  void SetReduceType() {
    int rank = x_dim.size();
    int reduce_rank = reduce_dim.size();
#ifdef PADDLE_WITH_XPU_KP
457
    bool not_higher = x_dim[0] > 1;
458
#else
459 460 461
    int device_id = paddle::platform::GetCurrentDeviceId();
    int max_grid_z = phi::backends::gpu::GetGpuMaxGridDimSize(device_id)[2];
    bool not_higher = x_dim[0] >= max_grid_z;
462
#endif
463 464
    if (reduce_last_dim && (reduce_rank == 1)) {
      reduce_type = static_cast<int>(ReduceType::kReduceLastDim);
465
    } else if (reduce_rank == 1) {
466 467
      reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
      if (rank == 3 && not_higher) {
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
        reduce_type = static_cast<int>(ReduceType::kReduceAny);
      }
    } else {
      reduce_type = static_cast<int>(ReduceType::kReduceAny);
    }
  }

#ifndef PADDLE_WITH_XPU_KP
  void SetBlockDimForReduceAny(dim3* block_dim, dim3* grid_dim) {
    constexpr int min_reduce_num_per_thread = 16;
    constexpr int max_reduce_num_per_thread = 256;
    constexpr int max_num_threads = kps::details::kReduceMaxThread;

    // set block size.
    // 1. If reduce_last_dim == true, all the threads whose threadIdx.y are same
    //    will process the reduction for one output.
    //    The number of output for one block is blockDim.y;
    // 2. If reduce_last_dim == false, different threadIdx.x will process
    //    different reduction and gets the output separately. If it is
    //    necessary, it should reduce in block y.
    //    The number of output for one block is blockDim.x;
    int block_x, block_y;
    int grid_num, reduce_num_per_thread;
    if (reduce_last_dim) {
      block_x = details::GetBlockDim(reduce_num);
      block_y = details::GetBlockDim(left_num);
      block_dim->x = block_x;
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      grid_num = details::AlignUp(left_num, block_dim->y);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->x);
    } else {
      block_x = details::GetBlockDim(left_num);
      block_y = details::GetBlockDim(reduce_num);
      block_dim->x = std::min(block_x, 32);
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      block_dim->x =
          std::min(block_x, static_cast<int>(max_num_threads / block_dim->y));
      grid_num = details::AlignUp(left_num, block_dim->x);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->y);
    }
    int device_id = paddle::platform::GetCurrentDeviceId();
    int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
    int max_threads_per_mp =
        paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
    int max_threads = max_threads_per_mp * max_mp;
    int num_threads = block_dim->x * block_dim->y;
    int max_num_blocks = max_threads / num_threads;

    // set grid size.
    // Whether to set grid.y larger than 1, there are 3 following rules:
    // 1. The number that each thread process should no less than
    //    min_reduce_num_per_threadbut no more than max_reduce_num_per_thread;
    // 2. It should maximize the utilization of SM.
    // So we choose the minimum between input_split_num_1 and input_split_num_3
    // to make each thread process as mush data as possible. Meanwhile,
    // the number cannot be larger than max_reduce_num_per_thread, so we
    // choose the maximum between the result above and input_split_num_2.
    int input_split_num_1 =
        details::AlignUp(reduce_num_per_thread, min_reduce_num_per_thread);
    int input_split_num_2 =
        details::AlignUp(reduce_num_per_thread, max_reduce_num_per_thread);
    int input_split_num_3 = details::AlignUp(max_num_blocks, grid_num);

    grid_dim->x = grid_num;
    grid_dim->y = std::max(std::min(input_split_num_1, input_split_num_3),
                           input_split_num_2);
    // if grid.y > 1, we need launch reduce kernel again.
    if (grid_dim->y > 1) {
      should_reduce_again = true;
    }
  }

  // set block and grid for launch kernel
  // for ReduceHigherDim: if block is enough -> splite reduce_num
  //                     else init block(32, 1) grid(block_num, 1)
  // for others: block(block_num, 1) , grid(left_num, 1)
  void SetBlockDimForHigher(dim3* block_dim, dim3* grid_dim) {
    int last_dim_num = x_dim.back();
    // update left_num
    int grid_z = left_num / last_dim_num;
    left_num = last_dim_num;
    grid_dim->z = grid_z;
    int device_id = paddle::platform::GetCurrentDeviceId();
    int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
    int max_threads_per_mp =
        paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
    int max_threads = max_threads_per_mp * max_mp;
    // init
    int num_block = (max_threads / left_num);
    block_dim->x = details::GetBlockDim(left_num);
    grid_dim->x = details::AlignUp(left_num, block_dim->x);
    blocking_size = reduce_num;

    if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) {
      blocking_size = details::GetLastPow2(reduce_num / num_block);
      if (blocking_size <= 1) {
        blocking_size = details::GetLastPow2(sqrt(reduce_num));
      } else if (blocking_size * 2 < reduce_num) {
        blocking_size *= 2;
      }
      should_reduce_again = true;
      grid_dim->y = details::AlignUp(reduce_num, blocking_size);
    }
  }
#endif

  void SetBlockDim() {
    // init
    int block_num = details::GetBlockDim(reduce_num);
    should_reduce_again = false;
    dim3 block_dim(block_num, 1, 1);
    dim3 grid_dim(left_num, 1, 1);
    blocking_size = reduce_num;
#ifdef PADDLE_WITH_XPU_KP
    if (reduce_last_dim) {
      block_dim.x = 64;
      block_dim.y = reduce_num;
      grid_dim.x = 1;
      grid_dim.y = 8;
    } else {
      block_dim.x = 64;
      block_dim.y = left_num;
      grid_dim.x = 8;
      grid_dim.y = 1;
    }
#else
    if (reduce_type == ReduceType::kReduceHigherDim) {
      SetBlockDimForHigher(&block_dim, &grid_dim);
    } else {
      SetBlockDimForReduceAny(&block_dim, &grid_dim);
    }
#endif

    block = block_dim;
    grid = grid_dim;
  }

 public:
  std::vector<int> reduce_dims_origin;
  std::vector<int> reduce_dim;
  std::vector<int> x_dim;
  std::vector<int> left_dim;
  std::vector<int> x_strides;
  std::vector<int> left_strides;
  std::vector<int> reduce_strides;

  int reduce_type;
  int reduce_num;
  int left_num;
  int blocking_size;
  bool should_reduce_again;
  bool reduce_last_dim;
  Ty* output_data;
  dim3 block;
  dim3 grid;
};

// when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp,
          typename Calculator>
__global__ void ReduceAnyKernel(const Tx* x,
                                Ty* y,
                                ReduceOp reducer,
                                TransformOp transformer,
                                MPType init,
                                int reduce_num,
                                int left_num,
                                bool reduce_last_dim,
                                const Calculator reduce_index_calculator,
                                const Calculator left_index_calculator,
646 647
                                const kps::DimConfig dim,
                                bool is_mean) {
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
  int input_idx, left_idx, stride;
  int block_size = 0;
  bool need_store = true;
  int loop_left = 0;
  int tid = 0;
  // the last dim gets involved in reduction
  int store_offset = 0;
  int stride_left = 0;
  if (reduce_last_dim) {
    auto block = ReduceIndexMapping<true>(dim);
    input_idx = block.BlockIdY() * block.BlockDimX();
    left_idx = block.BlockIdX() * block.BlockDimY() + THREAD_ID_Y;
    stride = block.GridDimY() * block.BlockDimX();
    block_size = block.BlockDimX();
    need_store = (THREAD_ID_X == 0) && (left_idx < left_num);
    store_offset = block.BlockIdY() * left_num + left_idx;
    loop_left = min(block.GetLoopSize(), left_num - left_idx);
    stride_left = 1;
    tid = THREAD_ID_X;
  } else {
    auto block = ReduceIndexMapping<false>(dim);
    input_idx = block.BlockIdY() * block.BlockDimY();
    left_idx = block.BlockIdX() * block.BlockDimX() + THREAD_ID_X;
    stride = block.GridDimY() * block.BlockDimY();
    block_size = block.BlockDimY();
    need_store = (THREAD_ID_Y == 0) && (left_idx < left_num);
    loop_left = min(block.GetLoopSize(), left_num - left_idx);
    stride_left = block.BlockDimX() * block.GridDimX();
    store_offset = block.BlockIdY() * left_num + left_idx;
    tid = THREAD_ID_Y;
  }
  // calculate the offset, means the addr where each thread really start.
  // 1. reduce for each thread
  MPType input_compute[REDUCE_VEC_SIZE];
  Tx input_reg[REDUCE_VEC_SIZE];
  int input_idx_tmp = input_idx;
  for (int i = 0; i < loop_left; i += stride_left) {
    int input_offset = left_index_calculator(left_idx + i);
    const _ptr_ Tx* input = x + input_offset;
    MPType reduce_var = init;
    // load REDUCE_VEC_SIZE data once, and then compute
    int bound = reduce_num - (REDUCE_VEC_SIZE - 1) * stride;
    input_idx = input_idx_tmp;
    for (; input_idx + block_size < bound;
         input_idx += REDUCE_VEC_SIZE * stride) {
      kps::ReadDataReduce<Tx,
                          Tx,
                          1,
                          REDUCE_VEC_SIZE,
                          1,
                          1,
                          Calculator,
                          kps::IdentityFunctor<Tx>,
                          false>(&input_reg[0],
                                 input,
                                 input_idx,
                                 reduce_index_calculator,
                                 1,
                                 reduce_num,
                                 1,
                                 stride,
                                 kps::IdentityFunctor<Tx>(),
                                 reduce_last_dim);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &input_compute[0], &input_reg[0], transformer);
      kps::Reduce<MPType,
                  REDUCE_VEC_SIZE,
                  1,
                  1,
                  ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &input_compute[0], reducer, reduce_last_dim);
    }

    kps::Init<MPType, REDUCE_VEC_SIZE>(&input_compute[0], init);
    kps::ReadDataReduce<Tx,
                        MPType,
                        1,
                        REDUCE_VEC_SIZE,
                        1,
                        1,
                        Calculator,
                        TransformOp,
                        true>(&input_compute[0],
                              input,
                              input_idx,
                              reduce_index_calculator,
                              1,
                              reduce_num - input_idx,
                              1,
                              stride,
                              transformer,
                              reduce_last_dim);
    kps::Reduce<MPType,
                REDUCE_VEC_SIZE,
                1,
                1,
                ReduceOp,
                kps::details::ReduceMode::kLocalMode>(
        &reduce_var, &input_compute[0], reducer, reduce_last_dim);

    kps::Reduce<MPType, 1, 1, 1, ReduceOp, kps::details::kGlobalMode>(
        &reduce_var, &reduce_var, reducer, reduce_last_dim);
751 752 753
    if (is_mean) {
      reduce_var = reduce_var / static_cast<MPType>(reduce_num);
    }
754 755 756
    Ty result = static_cast<Ty>(reduce_var);
    kps::details::WriteData<Ty>(
        y + store_offset + i, &result, static_cast<int>(need_store));
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
  }
}

template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp>
__global__ void ReduceHigherDimKernel(const Tx* x,
                                      Ty* y,
                                      ReduceOp reducer,
                                      TransformOp transformer,
                                      MPType init,
                                      int reduce_num,
                                      int left_num,
                                      int blocking_size,
773 774 775
                                      const kps::DimConfig dim,
                                      int mean_div,
                                      bool is_mean) {
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  auto block = ReduceIndexMapping<false>(dim);
  int idy = block.BlockIdY() * blocking_size;
  int idx = block.BlockIdX() * block.BlockDimX();
  int idz = BLOCK_ID_Z * left_num;
  int stride = dim.split_num_x * dim.deal_size_x;
  int size = left_num - dim.rem_x;
  int loop_size = min(reduce_num - idy, blocking_size);
  int store_offset = block.BlockIdY() * left_num + idz * block.GridDimY();
  int block_offset = idy * left_num + idz * reduce_num;
  const _ptr_ Tx* input = x + block_offset;
  Tx reduce_input;
  for (; idx < size; idx += stride) {
    MPType reduce_var = init;
    MPType reduce_compute = init;
    for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
      kps::ReadData<Tx, Tx, 1, 1, 1, false>(&reduce_input,
                                            input + loop_idx * left_num + idx,
                                            block.BlockDimX(),
                                            1,
                                            1,
                                            left_num);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &reduce_compute, &reduce_input, transformer);
      kps::Reduce<MPType,
                  1,
                  1,
                  1,
                  ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &reduce_compute, reducer, false);
    }
809 810 811
    if (is_mean) {
      reduce_var = reduce_var / static_cast<MPType>(mean_div);
    }
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
    Ty result = static_cast<Ty>(reduce_var);
    kps::WriteData<Ty, 1, 1, 1, false>(
        y + store_offset + idx, &result, block.BlockDimX());
  }

  if (idx < left_num) {
    MPType reduce_var = init;
    MPType reduce_compute = init;
    for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
      kps::ReadData<Tx, Tx, 1, 1, 1, true>(&reduce_input,
                                           input + loop_idx * left_num + idx,
                                           dim.rem_x,
                                           1,
                                           1,
                                           left_num);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &reduce_compute, &reduce_input, transformer);
      kps::Reduce<MPType,
                  1,
                  1,
                  1,
                  ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &reduce_compute, reducer, false);
    }
837 838 839 840

    if (is_mean) {
      reduce_var = reduce_var / static_cast<MPType>(mean_div);
    }
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
    Ty result = static_cast<Ty>(reduce_var);
    kps::WriteData<Ty, 1, 1, 1, true>(
        y + store_offset + idx, &result, dim.rem_x);
  }
}

template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp>
static void LaunchReduceKernel(const Tx* x_data,
                               Ty* y_data,
                               const ReduceOp& reducer,
                               const TransformOp& transform,
                               MPType init,
                               KPStream stream,
858 859
                               ReduceConfig<Ty> config,
                               bool is_mean = false) {
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
  if (config.reduce_type == kReduceLastDim) {
    int stride_reduce = 1;
    int stride_left = config.reduce_num;
    // for higher performance
    auto reduce_index_calculator = OneDimIndexCal(stride_reduce);
    auto left_index_calculator = OneDimIndexCal(stride_left);

    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.block.y,
                                        0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU_KP
876 877
    auto grid_num = 8;
    auto block_num = 64;
878
#else
879 880 881
    auto grid_num = config.grid;
    auto block_num = config.block;
#endif
882 883 884 885 886
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
887
                    OneDimIndexCal><<<grid_num, block_num, 0, stream>>>(
888 889 890 891 892 893 894 895 896 897
        x_data,
        config.output_data,
        reducer,
        transform,
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
898 899
        dim,
        is_mean && (!config.should_reduce_again));
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919

  } else {
    int reduce_rank = config.reduce_strides.size();
    int left_rank = config.left_strides.size();
    auto reduce_index_calculator = IndexCalculator(reduce_rank,
                                                   config.reduce_dim,
                                                   config.reduce_strides,
                                                   config.x_strides);
    auto left_index_calculator = IndexCalculator(
        left_rank, config.left_dim, config.left_strides, config.x_strides);

    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.block.y,
                                        0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU_KP
920 921
    auto grid_num = 8;
    auto block_num = 64;
922
#else
923 924 925
    auto grid_num = config.grid;
    auto block_num = config.block;
#endif
926 927 928 929 930
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
931
                    IndexCalculator><<<grid_num, block_num, 0, stream>>>(
932 933 934 935 936 937 938 939 940 941
        x_data,
        config.output_data,
        reducer,
        transform,
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
942 943
        dim,
        is_mean && (!config.should_reduce_again));
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
  }

  if (config.should_reduce_again) {
    dim3 block;
    dim3 grid;
    if (config.reduce_last_dim) {
      block = dim3(32, 1, 1);
      grid = dim3(details::AlignUp(config.left_num, 32), 1, 1);
    } else {
      block = dim3(config.block.x, 1, 1);
      grid = dim3(config.grid.x, 1, config.grid.z);
    }

    auto last_index = OneDimIndexCal(1);
    auto first_index = OneDimIndexCal(config.left_num);
    kps::DimConfig dim =
        kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
    dim.SetRem(config.left_num % block.x, 0, 0);
#ifdef PADDLE_WITH_XPU_KP
963 964 965 966 967
    int grid_size = 8;
    int block_size = 64;
#else
    auto grid_size = grid;
    auto block_size = block;
968
#endif
969 970 971 972 973
    ReduceHigherDimKernel<
        Ty,
        Ty,
        MPType,
        ReduceOp,
974
        kps::IdentityFunctor<Ty, MPType>><<<grid_size, block_size, 0, stream>>>(
975 976 977 978 979 980 981 982
        config.output_data,
        y_data,
        reducer,
        kps::IdentityFunctor<Ty, MPType>(),
        init,
        config.grid.y,
        config.left_num,
        config.grid.y,
983 984 985
        dim,
        config.reduce_num,
        is_mean);
986 987 988 989 990 991 992 993 994 995 996 997 998
  }
}

template <typename Tx,
          typename Ty,
          template <typename> class ReduceOp,
          typename TransformOp>
static typename std::enable_if<!std::is_same<Tx, phi::dtype::float16>::value,
                               void>::type
CubTensorReduceImpl(const Tx* x_data,
                    Ty* y_data,
                    const TransformOp& transform,
                    int reduce_num,
999
                    const KPDevice& dev_ctx,
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
                    KPStream stream) {
  auto reducer = ReduceOp<Ty>();
  cub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(x_data,
                                                                  transform);
  size_t temp_storage_bytes = 0;
  cub::DeviceReduce::Reduce(nullptr,
                            temp_storage_bytes,
                            trans_x,
                            y_data,
                            reduce_num,
                            reducer,
                            reducer.initial(),
                            stream);
1013 1014
  phi::DenseTensor tmp = phi::Empty<uint8_t, phi::GPUContext>(
      dev_ctx, {static_cast<int64_t>(temp_storage_bytes)});
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

  auto* temp_storage = dev_ctx.Alloc<uint8_t>(&tmp);

  cub::DeviceReduce::Reduce(temp_storage,
                            temp_storage_bytes,
                            trans_x,
                            y_data,
                            reduce_num,
                            reducer,
                            reducer.initial(),
                            stream);
}

template <typename Tx,
          typename Ty,
          template <typename> class ReduceOp,
          typename TransformOp>
static typename std::enable_if<std::is_same<Tx, phi::dtype::float16>::value,
                               void>::type
CubTensorReduceImpl(const Tx* x_data,
                    Ty* y_data,
                    const TransformOp& transform,
                    int reduce_num,
1038
                    const KPDevice& dev_ctx,
1039 1040 1041 1042 1043 1044 1045 1046 1047
                    KPStream stream) {
  PADDLE_THROW(phi::errors::InvalidArgument(
      "Tx should not be float16 when using cub::DeviceReduce::Reduce()."));
}

template <typename Tx,
          typename Ty,
          template <typename> class ReduceOp,
          typename TransformOp>
1048
void ReduceKernel(const KPDevice& dev_ctx,
1049 1050 1051
                  const phi::DenseTensor& x,
                  phi::DenseTensor* y,
                  const TransformOp& transform,
1052 1053
                  const std::vector<int>& origin_reduce_dims,
                  bool is_mean = false) {
1054 1055 1056
#ifdef PADDLE_WITH_XPU_KP
  auto stream = dev_ctx.x_context()->xpu_stream;
#else
1057
  auto stream = dev_ctx.stream();
1058
#endif
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
  dev_ctx.Alloc<Ty>(y);

  auto x_dim = phi::vectorize<int>(x.dims());
  auto config = ReduceConfig<Ty>(origin_reduce_dims, x_dim);
  config.Run();
  int numel = x.numel();
  // after config.run()
  // SetOutputData for ReduceHigherDim when should_reduce_again is true,
  // temp_output should be stored temp_data in output_data space or stored in
  // y_data;

  phi::DDim tmp_ddim;
1071
  phi::DenseTensor tmp;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

  auto x_data = x.data<Tx>();
  auto y_data = y->data<Ty>();

  if (config.reduce_num == 1) {
    std::vector<const DenseTensor*> inputs = {&x};
    std::vector<DenseTensor*> outputs = {y};
    funcs::ElementwiseKernel<Ty>(dev_ctx, inputs, &outputs, transform);
    return;
  }

  config.SetOutputData(y_data, dev_ctx, &tmp);
  constexpr bool kIsTxFP16 = std::is_same<Tx, phi::dtype::float16>::value;
  bool use_cub_reduce = config.reduce_num == numel && !kIsTxFP16;
#ifndef PADDLE_WITH_XPU_KP
  if (use_cub_reduce) {
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
    if (is_mean) {
      using Div = kps::DivideFunctor<Tx>;
      CubTensorReduceImpl<Tx, Ty, ReduceOp, Div>(x_data,
                                                 y_data,
                                                 Div(config.reduce_num),
                                                 config.reduce_num,
                                                 dev_ctx,
                                                 stream);
    } else {
      CubTensorReduceImpl<Tx, Ty, ReduceOp, TransformOp>(
          x_data, y_data, transform, config.reduce_num, dev_ctx, stream);
    }
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
    return;
  }
#endif

  using MPType = typename kps::details::MPTypeTrait<Ty>::Type;
  auto reducer = ReduceOp<MPType>();
  // launch ReduceHigherDimKernel
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  // eg: x_dim = {nz, ny, nx}, nx != 1, axis can be 0 or 1
  //     if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx /
  //     32
  //     else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32
  if (config.reduce_type == ReduceType::kReduceHigherDim) {
    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.blocking_size,
                                        0);
    dim.SetRem(config.left_num % config.block.x,
               config.reduce_num % config.blocking_size,
               0);

#ifdef PADDLE_WITH_XPU_KP
1125 1126 1127 1128 1129 1130
    auto grid_num = 8;
    auto block_num = 64;
#else
    auto grid_num = config.grid;
    auto block_num = config.block;
#endif
1131 1132 1133 1134
    ReduceHigherDimKernel<Tx,
                          Ty,
                          MPType,
                          ReduceOp<MPType>,
1135
                          TransformOp><<<grid_num, block_num, 0, stream>>>(
1136 1137 1138 1139 1140 1141 1142 1143
        x_data,
        config.output_data,
        reducer,
        transform,
        reducer.initial(),
        config.reduce_num,
        config.left_num,
        config.blocking_size,
1144 1145 1146
        dim,
        config.reduce_num,
        is_mean && (!config.should_reduce_again));
1147 1148 1149 1150 1151 1152 1153 1154 1155

    if (config.should_reduce_again) {
      dim3 block = dim3(config.block.x, 1, 1);
      dim3 grid = dim3(config.grid.x, 1, config.grid.z);
      kps::DimConfig dim2 =
          kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
      dim2.SetRem(config.left_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU_KP
1156 1157 1158 1159 1160
      int grid_size = 8;
      int block_size = 64;
#else
      auto grid_size = grid;
      auto block_size = block;
1161
#endif
1162 1163 1164 1165 1166
      ReduceHigherDimKernel<
          Ty,
          Ty,
          MPType,
          ReduceOp<MPType>,
1167 1168
          kps::IdentityFunctor<Ty,
                               MPType>><<<grid_size, block_size, 0, stream>>>(
1169 1170 1171 1172 1173 1174 1175 1176
          config.output_data,
          y_data,
          reducer,
          kps::IdentityFunctor<Ty, MPType>(config.grid.y),
          reducer.initial(),
          config.grid.y,
          config.left_num,
          config.grid.y,
1177 1178 1179
          dim2,
          config.reduce_num,
          is_mean);
1180 1181 1182 1183 1184 1185 1186 1187
    }
    return;
  }

  // when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
  // when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
  // function will be used
  LaunchReduceKernel<Tx, Ty, MPType, ReduceOp<MPType>, TransformOp>(
1188 1189 1190 1191 1192 1193 1194 1195
      x_data,
      y_data,
      reducer,
      transform,
      reducer.initial(),
      stream,
      config,
      is_mean);
1196 1197 1198 1199 1200 1201 1202
}

}  // namespace funcs

}  // namespace phi

#endif